Program training API
Source code in synalinks/src/trainers/trainer.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 |
|
_flatten_metrics_in_order(logs)
Turns logs
dict into a list as per key order of metrics_names
.
Source code in synalinks/src/trainers/trainer.py
_get_metrics_result_or_logs(logs)
Returns program metrics as a dict if the keys match with input logs.
When the training / evaluation is performed with an asynchronous steps,
the last scheduled train / test_step
may not give the latest metrics
because it is not guaranteed to be executed the last. This method gets
metrics from the program directly instead of relying on the return from
last step function.
When the user has custom train / test step functions, the metrics
returned may be different from Program.metrics
. In those instances,
this function will be no-op and return the logs passed in.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logs
|
dict
|
A |
required |
Returns:
Type | Description |
---|---|
dict
|
A |
Source code in synalinks/src/trainers/trainer.py
compile(optimizer=None, reward=None, reward_weights=None, metrics=None, run_eagerly=False, steps_per_execution=1)
Configures the program for training.
Example:
program.compile(
optimizer=synalinks.optimizers.RandomFewShot(),
reward=synalinks.rewards.ExactMatch(),
metrics=[
synalinks.metrics.MeanMetricWrapper(synalinks.rewards.exact_match),
],
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
optimizer
|
Optimizer
|
Optimizer instance. See |
None
|
reward
|
Reward
|
Reward function. A |
None
|
reward_weights
|
list
|
Optional list specifying scalar coefficients
(Python floats) to weight the reward contributions of
different program outputs. The reward value that will be maximized
by the program will then be the weighted sum of all individual
rewards, weighted by the |
None
|
metrics
|
list
|
List of metrics to be evaluated by the program during
training and testing. Each of it is a |
None
|
run_eagerly
|
bool
|
If |
False
|
steps_per_execution
|
int
|
The number of batches to run
during each a single compiled function call. Running multiple
batches inside a single compiled function call can
greatly improve performance on TPUs or small programs with a large
Python overhead. At most, one full epoch will be run each
execution. If a number larger than the size of the epoch is
passed, the execution will be truncated to the size of the
epoch. Note that if |
1
|
Source code in synalinks/src/trainers/trainer.py
compile_from_config(config)
Compiles the program with the information given in config.
This method uses the information in the config (optimizer, reward, metrics, etc.) to compile the program.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
dict
|
Dict containing information for compiling the program. |
required |
Source code in synalinks/src/trainers/trainer.py
compute_metrics(x, y, y_pred)
async
Update metric states and collect all metrics to be returned.
Subclasses can optionally override this method to provide custom metric
updating and collection logic. Custom metrics are not passed in
compile()
, they can be created in __init__
or build
. They are
automatically tracked and returned by self.metrics
.
```
Args:
x: Input data.
y: Target data.
y_pred: Predictions returned by the program output of program.call(x)
.
Returns:
A dict
containing values that will be passed to
synalinks.callbacks.CallbackList.on_train_batch_end()
. Typically,
the values of the metrics listed in self.metrics
are returned.
Example: {'reward': 0.2, 'accuracy': 0.7}
.
Source code in synalinks/src/trainers/trainer.py
compute_reward(x=None, y=None, y_pred=None, sample_weight=None, training=True)
async
Compute the total reward, validate it, and return it.
Subclasses can optionally override this method to provide custom reward computation logic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
list
|
Input data. |
None
|
y
|
list
|
Target data. |
None
|
y_pred
|
list
|
Predictions returned by the program (output of |
None
|
training
|
bool
|
Whether we are training or evaluating the program. |
True
|
Returns:
Type | Description |
---|---|
float | None
|
The total reward as a scalar, or |
Source code in synalinks/src/trainers/trainer.py
evaluate(x=None, y=None, batch_size=None, verbose='auto', steps=None, callbacks=None, return_dict=True, **kwargs)
async
Returns the reward value & metrics values for the program in test mode.
Computation is done in batches (see the batch_size
arg.)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | generator
|
Input data. It can be:
- A NumPy array (or array-like), or a list of |
None
|
y
|
ndarray
|
Target data. Like the input data |
None
|
batch_size
|
int
|
Integer or |
None
|
verbose
|
int | str
|
|
'auto'
|
steps
|
int
|
Integer or |
None
|
callbacks
|
list
|
List of |
None
|
return_dict
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
float | list | dict
|
Scalar test reward
(if the program has a single output and no metrics)
or list of scalars (if the program has multiple outputs
and/or metrics). The attribute |
Source code in synalinks/src/trainers/trainer.py
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
|
fit(x=None, y=None, batch_size=None, epochs=1, verbose='auto', callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_batch_size=None, validation_freq=1)
async
Trains the program for a fixed number of epochs (dataset iterations).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | generator
|
Input data. It can be:
- A NumPy array (or array-like), or a list of |
None
|
y
|
ndarray
|
Target data. Like the input data |
None
|
batch_size
|
int
|
Integer or |
None
|
epochs
|
int
|
Integer. Number of epochs to train the program.
An epoch is an iteration over the entire |
1
|
verbose
|
int
|
|
'auto'
|
callbacks
|
list
|
List of |
None
|
validation_split
|
float
|
Float between 0 and 1.
Fraction of the training data to be used as validation data.
The program will set apart this fraction of the training data,
will not train on it, and will evaluate the reward and any program
metrics on this data at the end of each epoch. The validation
data is selected from the last samples in the |
0.0
|
validation_data
|
tuple | iterator
|
Data on which to evaluate
the reward and any program metrics at the end of each epoch.
The program will not be trained on this data.
|
None
|
shuffle
|
bool
|
Whether to shuffle the training data before each
epoch. This argument is ignored when |
True
|
initial_epoch
|
int
|
Integer. Epoch at which to start training (useful for resuming a previous training run). |
0
|
steps_per_epoch
|
int
|
Integer or |
None
|
validation_steps
|
int
|
Integer or |
None
|
validation_batch_size
|
int
|
Integer or |
None
|
validation_freq
|
int
|
Only relevant if validation data is provided.
Specifies how many training epochs to run
before a new validation run is performed,
e.g. |
1
|
Returns:
Type | Description |
---|---|
History
|
A |
Source code in synalinks/src/trainers/trainer.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|
get_compile_config()
Returns a serialized config with information for compiling the program.
This method returns a config dictionary containing all the information (optimizer, reward, metrics, etc.) with which the program was compiled.
Returns:
Type | Description |
---|---|
dict
|
A dict containing information for compiling the program. |
Source code in synalinks/src/trainers/trainer.py
get_metrics_result()
Returns the program's metrics values as a dict.
If any of the metric result is a dict (containing multiple metrics), each of them gets added to the top level returned dict of this method.
Returns:
Type | Description |
---|---|
dict
|
A |
Source code in synalinks/src/trainers/trainer.py
predict(x, batch_size=None, verbose='auto', steps=None, callbacks=None)
async
Generates output predictions for the input samples.
Computation is done in batches. This method is designed for batch processing of large numbers of inputs. It is not intended for use inside of loops that iterate over your data and process small numbers of inputs at a time.
For small numbers of inputs that fit in one batch,
directly use __call__()
for faster execution, e.g.,
program(x)
, or program(x, training=False)
if you have modules
that behave differently during inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | generator
|
Input data. It can be:
- A NumPy array (or array-like), or a list of |
required |
batch_size
|
int
|
Integer or |
None
|
verbose
|
int
|
|
'auto'
|
steps
|
int
|
Total number of steps (batches of samples) to draw before
declaring the prediction round finished. If |
None
|
callbacks
|
list
|
List of |
None
|
Returns:
Type | Description |
---|---|
list
|
|
Source code in synalinks/src/trainers/trainer.py
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
|
predict_on_batch(x, training=False)
async
Returns predictions for a single batch of samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Input data. Must be array-like. |
required |
training
|
bool
|
Boolean. True if training. |
False
|
Returns:
Type | Description |
---|---|
list
|
list(s) of JsonDataModel predictions. |
Source code in synalinks/src/trainers/trainer.py
test_on_batch(x, y=None, return_dict=False)
async
Test the program on a single batch of samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Input data. Must be array-like. |
required |
y
|
ndarray
|
Target data. Must be array-like. |
None
|
return_dict
|
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
float | list | dict
|
A scalar reward value
(when no metrics and |
Source code in synalinks/src/trainers/trainer.py
train_on_batch(x, y=None, return_dict=False)
async
Runs a single backpropagation/optimization update on a single batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Input data. Must be array-like. |
required |
y
|
ndarray
|
Target data. Must be array-like. |
None
|
return_dict
|
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
float | list | dict
|
A scalar reward value
(when no metrics and |