RandomFewShot
RandomFewShot
Bases: Optimizer
Sample randomly among the best examples to populate the LM's prompt to make it learn using Few Shot Learning. Additionaly use an evolutionary method to merge the examples from the best candidates over time.
Example:
import synalinks
import asyncio
async def main():
# ... your program definition
program.compile(
reward=synalinks.rewards.ExactMatch(),
optimizer=synalinks.optimizers.RandomFewShot(
nb_min_examples=1,
nb_max_examples=3,
sampling_temperature=1.0,
merging_rate=0.02,
),
)
history = await program.fit(...)
References
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nb_min_examples
|
int
|
The min number of examples for few-shot learning (Default to 1). |
1
|
nb_max_examples
|
int
|
The max number of examples for few-shot learning (Default to 3). |
3
|
sampling_temperature
|
float
|
The sampling_temperature for softmax sampling of the few-shot learning examples. Lower values concentrate sampling on high-reward predictions, higher values make sampling more uniform (Default 1.0). |
1.0
|
merging_rate
|
float
|
Rate at which crossover vs mutation is selected. (Default to 0.02). |
0.02
|
population_size
|
int
|
The maximum number of best candidates to keep during the optimization process. |
10
|
name
|
str
|
Optional name for the optimizer instance. |
None
|
description
|
str
|
Optional description of the optimizer instance. |
None
|
Source code in synalinks/src/optimizers/random_few_shot.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|