OPRO
OPRO
Bases: Optimizer
Optimization by PROmpting (OPRO) optimizer
Use a language model to optimize the prompt's instructions.
Example:
import synalinks
import asyncio
async def main():
# ... your program definition
program.compile(
reward=synalinks.rewards.ExactMatch(),
optimizer=synalinks.optimizers.OPRO(
language_model=language_model, # The language model to use
k_best=10, # The number of best examples/instructions to provide to the LM
),
)
history = await program.fit(...)
References
Parameters:
Name | Type | Description | Default |
---|---|---|---|
language_model
|
LanguageModel
|
The language model to use. |
None
|
k_best
|
int
|
The max number of best predictions and instructions to provide to the optimizer (default 10). |
10
|
Source code in synalinks/src/optimizers/opro.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
finalize(trainable_variable)
async
Finalize the optimization of a single variable (cleanup/scaling etc.).
optimize(trainable_variable, reward=None)
async
Perform a backprop/optimization on a single variable.