FewShotOPRO
FewShotOPRO
Bases: Optimizer
Sample randomly among the best examples to populate the LM's prompt to make it learn using Few Shot Learning while generating instructions with OPRO.
Example:
import synalinks
import asyncio
async def main():
# ... your program definition
program.compile(
reward=synalinks.rewards.ExactMatch(),
optimizer=synalinks.optimizers.FewShotOPRO(
language_model=language_model,
k=3, # The number of examples to provide to the prompt
k_best=10, # The number of best examples to select from
),
)
history = await program.fit(...)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
language_model
|
LanguageModel
|
The language model to use. |
None
|
k
|
int
|
The number of examples to select (default 3) among the best predictions. |
3
|
k_best
|
int
|
The max number of best predictions/instructions to select from (default 10). |
10
|
program
|
Program
|
The program to use. Optional. If None create one at start. |
None
|
name
|
str
|
The name of the optimizer. |
None
|
description
|
str
|
The description of the optimizer. |
None
|
Source code in synalinks/src/optimizers/few_shot_opro.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
finalize(trainable_variable)
async
Finalize the optimization of a single variable (cleanup/scaling etc.).
optimize(trainable_variable, reward=None)
async
Perform a backprop/optimization on a single variable.