Base Optimizer class
Bases: SynalinksSaveable
Optimizer base class: all Synalinks optimizers inherit from this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema
|
dict
|
The schema of the variables that the optimizer can act upon. |
None
|
data_model
|
DataModel
|
The backend data model that the optimizer can act upon, if no schema is specified, uses the data model to infer it. |
None
|
name
|
str
|
The name of the optimizer. |
None
|
description
|
str
|
The description of the optimizer. |
None
|
Source code in synalinks/src/optimizers/optimizer.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
apply_optimization(trainable_variables, reward=None, training=False)
async
Apply the backprop/optimization for each trainable variables that match the optimizer schema.
Source code in synalinks/src/optimizers/optimizer.py
finalize(trainable_variable)
async
Finalize the optimization of the variable (cleanup/scaling etc.).
This function needs to be implemented by subclassed Optimizer.
Source code in synalinks/src/optimizers/optimizer.py
finalize_variable_values(trainable_variables)
async
Finalize the optimization of the variables (cleanup/scaling etc.).
Source code in synalinks/src/optimizers/optimizer.py
load_own_variables(store)
Set the state of this optimizer object.
Source code in synalinks/src/optimizers/optimizer.py
optimize(trainable_variable, reward=None, training=False)
async
Perform a backprop/optimization on a single variable.
This function needs to be implemented by subclassed Optimizer.