KnowledgeRetriever module
KnowledgeRetriever
Bases: Module
Retrieve knowledge using a hybrid neuro-symbolic approach.
Unlike the Text2Cypher approach, this retriever is 100% guaranteed to generate a valid Cypher query every time.
It doesn't need to have the graph schema in the prompt, thus
helping the language models by avoiding prompt confusion, because
the nodes and relation labels are enforced dynamically
using constrained structured output (similar to the Decision
module).
It works by using the language model to infer the subject, object and relation labels to search for, along with a similarity search field for the object and subject triplets. Additionally, some boolean fields are added to integrate logic-enhanced searches.
These parameters are then used to programmatically create a valid Cypher query.
This approach not only ensures the syntactical correctness of the Cypher query but also protects the graph database from Cypher injections that could arise from an adversarial prompt injection.
import synalinks
import asyncio
from typing import Literal
class Query(synalinks.DataModel):
query: str = synalinks.Field(
description="The user query",
)
class Answer(synalinks.DataModel):
query: str = synalinks.Field(
description="The answer to the user query",
)
class Country(synalinks.Entity):
label: Literal["Country"]
name: str = synalinks.Field(
description="The country's name",
)
class City(synalinks.Entity):
label: Literal["City"]
name: str = synalinks.Field(
description="The city's name",
)
class IsCapitalOf(synalinks.Relation):
subj: City
label: Literal["IsCapitalOf"]
obj: Country
class IsCityOf(synalinks.Relation):
subj: City
label: Literal["IsCityOf"]
obj: Country
async def main():
inputs = synalinks.Input(data_model=Query)
x = await synalinks.KnowledgeRetriever(
entity_models=[Country, City],
relation_models=[IsCityOf, IsCapitalOf]
language_model=language_model,
knowledge_base=knowledge_base,
)(inputs)
outputs = await synalinks.Generator(
data_model=Answer,
language_model=language_model,
)(x)
program = synalinks.Program(
inputs=inputs,
outputs=outputs,
name="kag_program",
description="A simple KAG program",
)
if __name__ == "__main__":
asyncio.run(main())
Parameters:
Name | Type | Description | Default |
---|---|---|---|
knowledge_base
|
KnowledgeBase
|
The knowledge base to use. |
None
|
language_model
|
LanguageModel
|
The language model to use. |
None
|
entity_models
|
list
|
The list of entities models to search for
being a list of |
None
|
relation_models
|
list
|
The list of relations models to seach for.
being a list of |
None
|
k
|
int
|
Maximum number of similar entities to return (Defaults to 10). |
10
|
threshold
|
float
|
Minimum similarity score for results. Entities with similarity below this threshold are excluded. Should be between 0.0 and 1.0 (Defaults to 0.7). |
0.8
|
prompt_template
|
str
|
The default jinja2 prompt template
to use (see |
None
|
examples
|
list
|
The default examples to use in the prompt
(see |
None
|
instructions
|
list
|
The default instructions to use (see |
None
|
use_inputs_schema
|
bool
|
Optional. Whether or not use the inputs schema in
the prompt (Default to False) (see |
False
|
use_outputs_schema
|
bool
|
Optional. Whether or not use the outputs schema in
the prompt (Default to False) (see |
False
|
return_inputs
|
bool
|
Optional. Whether or not to concatenate the inputs to the outputs (Default to True). |
True
|
return_query
|
bool
|
Optional. Whether or not to concatenate the search query to the outputs (Default to True). |
True
|
name
|
str
|
Optional. The name of the module. |
None
|
description
|
str
|
Optional. The description of the module. |
None
|
trainable
|
bool
|
Whether the module's variables should be trainable. |
True
|
Source code in synalinks/src/modules/knowledge/knowledge_retriever.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|