EmbedKnowledge module
EmbedKnowledge
Bases: Module
Extracts a field of interest and generate the corresponding embedding vector.
This module is designed to work with any data model structure. It supports to mask the entity fields in order to keep only one field to embed per data model.
Note: Each data model should have the same field to compute the embedding
from like a name or description field using in_mask.
Or every data model should have only one field left after masking using
out_mask argument.
import synalinks
import asyncio
from typing import Literal
class Document(synalinks.DataModel):
title: str = synalinks.Field(
description="The document title",
)
text: str = synalinks.Field(
description="The document content",
)
async def main():
inputs = synalinks.Input(data_model=Document)
outputs = await synalinks.EmbedKnowledge(
embedding_model=embedding_model,
in_mask=["text"],
)(inputs)
program = synalinks.Program(
inputs=inputs,
outputs=outputs,
name="embbed_document",
description="Embbed the given documents"
)
doc = Document(
title="my title",
text="my document",
)
result = await program(doc)
if __name__ == "__main__":
asyncio.run(main())
If you want to process batch asynchronously
use program.predict() instead, see the FAQ
to understand the difference between program() and program.predict()
Here is an example:
import synalinks
import asyncio
import numpy as np
from typing import Literal
class Document(synalinks.Entity):
label: Literal["Document"]
text: str = synalinks.Field(
description="The document content",
)
async def main():
inputs = synalinks.Input(data_model=Document)
outputs = await synalinks.EmbedKnowledge(
embedding_model=embedding_model,
in_mask=["text"],
)(inputs)
program = synalinks.Program(
inputs=inputs,
outputs=outputs,
name="embbed_document",
description="Embbed the given documents"
)
doc1 = Document(label="Document", text="my document 1")
doc2 = Document(label="Document", text="my document 2")
doc3 = Document(label="Document", text="my document 3")
docs = np.array([doc1, doc2, doc3], dtype="object")
embedded_docs = await program.predict(docs)
if __name__ == "__main__":
asyncio.run(main())
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
embedding_model
|
EmbeddingModel
|
The embedding model to use. |
None
|
in_mask
|
list
|
A mask applied to keep specific entity fields. |
None
|
out_mask
|
list
|
A mask applied to remove specific entity fields. |
None
|
name
|
str
|
Optional. The name of the module. |
None
|
description
|
str
|
Optional. The description of the module. |
None
|
trainable
|
bool
|
Whether the module's variables should be trainable. |
False
|
Source code in synalinks/src/modules/knowledge/embed_knowledge.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | |