ReACT Agent module
ReACTAgent
Bases: Program
ReACT agent as a directed acyclic graph that choose at each step the function to use.
Note: Each function MUST return a JSON object dict and be asynchrounous
Example:
async def main():
class Query(DataModel):
query: str
class FinalAnswer(DataModel):
answer: float
async def calculate(expression: str):
"""Calculate the result of a mathematical expression.
Args:
expression (str): The mathematical expression to calculate, such as
'2 + 2'. The expression can contain numbers, operators (+, -, *, /),
parentheses, and spaces.
"""
if not all(char in "0123456789+-*/(). " for char in expression):
return {
"result": None,
"log": "Error: invalid characters in expression",
}
try:
# Evaluate the mathematical expression safely
result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
return {
"result": result,
"log": "Successfully executed",
}
except Exception as e:
return {
"result": None,
"log": f"Error: {e}",
}
language_model = LanguageModel(model="ollama_chat/deepseek-r1")
x0 = Input(data_model=Query)
x1 = await ReACTAgent(
data_model=FinalAnswer,
language_model=language_model,
functions=[calculate],
max_iterations=3,
)(x0)
program = Program(
inputs=x0,
outputs=x1,
)
if __name__ == "__main__":
asyncio.run(main())
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema
|
dict
|
The JSON schema to use for the final answer.
If not provided, it will use the |
None
|
data_model
|
DataModel | JsonDataModel | SymbolicDataModel
|
Optional. The data model to use for the final answer. If None provided, the Agent will return a ChatMessage-like data model. |
None
|
functions
|
list
|
A list of Python functions for the agent to choose from. |
None
|
question
|
str
|
Optional. The question to branch at each step. |
None
|
language_model
|
LanguageModel
|
The language model to use, if provided
it will ignore |
None
|
decision_language_model
|
LanguageModel
|
The language model used for decision-making. |
None
|
action_language_model
|
LanguageModel
|
The language model used for actions. |
None
|
prompt_template
|
str
|
Optional. The jinja2 prompt template to use
(See |
None
|
decision_examples
|
list
|
A default list of examples for decision-making
(See |
None
|
decision_hints
|
list
|
A default list of hints for decision-making
(See |
None
|
use_inputs_schema
|
bool
|
Optional. Whether or not use the inputs schema in
the decision prompt (Default to False) (see |
False
|
use_outputs_schema
|
bool
|
Optional. Whether or not use the outputs schema in
the decision prompt (Default to False) (see |
False
|
max_iterations
|
int
|
The maximum number of steps to perform. |
5
|
name
|
str
|
Optional. The name of the module. |
None
|
description
|
str
|
Optional. The description of the module. |
None
|
trainable
|
bool
|
Whether the module's variables should be trainable. |
True
|
Source code in synalinks/src/modules/agents/react.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
get_decision_hints()
The default hints for decision-making