FunctionCallingAgent module
FunctionCallingAgent
Bases: Module
A trainable parallel function calling agent.
The agent has 2 different modes:
- Autonomous: It will execute tools as soon as called.
- Non-autonomous: It will return the tool arguments as an ChatMessage.
In autonomous mode, the agent accept any kind of data model input and perform a final inference to
eventually format its final answer if a data_model
or schema
is provided.
Example:
import synalinks
import asyncio
class Query(synalinks.DataModel):
query: str = synalinks.Field(
description="The user query",
)
class NumericalFinalAnswer(synalinks.DataModel):
final_answer: float = synalinks.Field(
description="The correct final numerical answer",
)
async def calculate(expression: str):
"""Calculate the result of a mathematical expression.
Args:
expression (str): The mathematical expression to calculate, such as
'2 + 2'. The expression can contain numbers, operators (+, -, *, /),
parentheses, and spaces.
"""
if not all(char in "0123456789+-*/(). " for char in expression):
return {
"result": None,
"log": (
"Error: invalid characters in expression. "
"The expression can only contain numbers, operators (+, -, *, /),"
" parentheses, and spaces NOT letters."
),
}
try:
# Evaluate the mathematical expression safely
result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
return {
"result": result,
"log": "Successfully executed",
}
except Exception as e:
return {
"result": None,
"log": f"Error: {e}",
}
async def main():
language_model = synalinks.LanguageModel(model="ollama/mistral")
tools = [
synalinks.Tool(calculate),
]
inputs = synalinks.Input(data_model=Query)
outputs = await synalinks.FunctionCallingAgent(
data_model=NumericalFinalAnswer,
tools=tools,
language_model=language_model,
max_iterations=5,
autonomous=True,
)(inputs)
agent = synalinks.Program(
inputs=inputs,
outputs=outputs,
name="math_agent",
description="A math agent",
)
input_query = Query(query="How much is 152648 + 485?")
response = await agent(input_query)
print(response.prettify_json())
if __name__ == "__main__":
asyncio.run(main())
Result:
{
"query": "How much is 152648 + 485?",
"messages": [
{
"role": "assistant",
"content": "Performing simple addition",
"tool_calls": [
{
"id": "92a3657c-1a45-46e6-8173-df4255b8423b",
"name": "calculate",
"arguments": {
"expression": "152648 + 485"
}
}
]
},
{
"role": "tool",
"content": {
"result": 153133.0,
"log": "Successfully executed"
},
"tool_call_id": "92a3657c-1a45-46e6-8173-df4255b8423b",
},
{
"role": "assistant",
"content": "The user has asked for a simple addition calculation. The assistant used the 'calculate' tool to perform this task, and the result was returned successfully.",
}
],
"final_answer": 153133.0
}
In non-autonomous mode (also called human in the loop or interactive mode), the
user needs to validate/edit the tool arguments and send it back to the agent. In this
mode, the agent requires an ChatMessages
data model as input and output an
ChatMessage
(or ChatMessages
if return_inputs_with_trajectory
is true)
back to the user. In that case, the agent ignore the max_iterations
argument,
as it will only perform one step at a time.
Example:
import synalinks
import asyncio
MAX_ITERATIONS = 5
async def calculate(expression: str):
"""Calculate the result of a mathematical expression.
Args:
expression (str): The mathematical expression to calculate, such as
'2 + 2'. The expression can contain numbers, operators (+, -, *, /),
parentheses, and spaces.
"""
if not all(char in "0123456789+-*/(). " for char in expression):
return {
"result": None,
"log": (
"Error: invalid characters in expression. "
"The expression can only contain numbers, operators (+, -, *, /),"
" parentheses, and spaces NOT letters."
),
}
try:
# Evaluate the mathematical expression safely
result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
return {
"result": result,
"log": "Successfully executed",
}
except Exception as e:
return {
"result": None,
"log": f"Error: {e}",
}
async def main():
language_model = synalinks.LanguageModel(
model="ollama/mistral",
)
tools = [
synalinks.Tool(calculate),
]
inputs = synalinks.Input(data_model=synalinks.ChatMessages)
outputs = await synalinks.FunctionCallingAgent(
tools=tools,
language_model=language_model,
return_inputs_with_trajectory=True,
autonomous=False,
)(inputs)
agent = synalinks.Program(
inputs=inputs,
outputs=outputs,
name="math_agent",
description="A math agent",
)
input_messages = synalinks.ChatMessages(
messages=[
synalinks.ChatMessage(
role="user",
content="How much is 152648 + 485?",
)
]
)
for i in range(MAX_ITERATIONS):
response = await agent(input_messages)
print("Assistant response (with trajectory):")
print(response.prettify_json())
assistant_message = response.get("messages")[-1]
if not assistant_message.get("tool_calls"):
break # We stop the loop if the agent didn't call any tool
# Validate the tool calls arguments (with an UI or CLI)
# Then re-inject the validated assistant response in the input_messages
# The corresponding tools will be called by the agent
# Here we assume everything is okay for the purpose of the demo ^^
input_messages.messages.append(assistant_message)
if __name__ == "__main__":
asyncio.run(main())
The FunctionCallingAgent is compatible with MCP tools, here is an example on how to use it:
import synalinks
import asyncio
import litellm
class Query(synalinks.DataModel):
"""Input query data model"""
query: str = synalinks.Field(
description="The user query",
)
class FinalAnswer(synalinks.DataModel):
"""Final answer data model"""
answer: str = synalinks.Field(
description="The correct final answer",
)
async def main():
language_model = synalinks.LanguageModel(
model="ollama/mistral",
)
mcp_client = synalinks.MultiServerMCPClient(
{
"math": {
"url": "http://localhost:8183/mcp/",
"transport": "streamable_http",
},
}
)
tools = await mcp_client.get_tools()
inputs = synalinks.Input(data_model=Query)
outputs = await synalinks.FunctionCallingAgent(
data_model=FinalAnswer,
tools=tools,
language_model=language_model,
max_iterations=5,
autonomous=True,
)(inputs)
agent = synalinks.Program(
inputs=inputs,
outputs=outputs,
name="mcp_math_agent",
description="A math agent that can use an external calculator",
)
input_query = Query(query="How much is 152648 + 485?")
response = await agent(input_query)
print(response.prettify_json())
if __name__ == "__main__":
asyncio.run(main())
Source code in synalinks/src/modules/agents/function_calling_agent.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
|
get_default_instructions()
The default parallel agent instructions.