Skip to content

FunctionCallingAgent module

FunctionCallingAgent

Bases: Module

A trainable parallel function calling agent.

The agent has 2 different modes:

  • Autonomous: It will execute tools as soon as called.
  • Non-autonomous: It will return the tool arguments as an ChatMessage.

In autonomous mode, the agent accept any kind of data model input and perform a final inference to eventually format its final answer if a data_model or schema is provided.

Example:

import synalinks
import asyncio

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

class NumericalFinalAnswer(synalinks.DataModel):
    final_answer: float = synalinks.Field(
        description="The correct final numerical answer",
    )

async def calculate(expression: str):
    """Calculate the result of a mathematical expression.

    Args:
        expression (str): The mathematical expression to calculate, such as
            '2 + 2'. The expression can contain numbers, operators (+, -, *, /),
            parentheses, and spaces.
    """
    if not all(char in "0123456789+-*/(). " for char in expression):
        return {
            "result": None,
            "log": (
                    "Error: invalid characters in expression. "
                    "The expression can only contain numbers, operators (+, -, *, /),"
                    " parentheses, and spaces NOT letters."
                ),
        }
    try:
        # Evaluate the mathematical expression safely
        result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
        return {
            "result": result,
            "log": "Successfully executed",
        }
    except Exception as e:
        return {
            "result": None,
            "log": f"Error: {e}",
        }

async def main():
    language_model = synalinks.LanguageModel(model="ollama/mistral")

    tools = [
        synalinks.Tool(calculate),
    ]

    inputs = synalinks.Input(data_model=Query)
    outputs = await synalinks.FunctionCallingAgent(
        data_model=NumericalFinalAnswer,
        tools=tools,
        language_model=language_model,
        max_iterations=5,
        autonomous=True,
    )(inputs)
    agent = synalinks.Program(
        inputs=inputs,
        outputs=outputs,
        name="math_agent",
        description="A math agent",
    )

    input_query = Query(query="How much is 152648 + 485?")
    response = await agent(input_query)

    print(response.prettify_json())

if __name__ == "__main__":
    asyncio.run(main())

Result:

{
    "query": "How much is 152648 + 485?",
    "messages": [
        {
        "role": "assistant",
        "content": "Performing simple addition",
        "tool_calls": [
            {
                "id": "92a3657c-1a45-46e6-8173-df4255b8423b",
                "name": "calculate",
                "arguments": {
                    "expression": "152648 + 485"
                    }
                }
            ]
        },
        {
            "role": "tool",
            "content": {
                "result": 153133.0,
                "log": "Successfully executed"
            },
            "tool_call_id": "92a3657c-1a45-46e6-8173-df4255b8423b",
        },
        {
            "role": "assistant",
            "content": "The user has asked for a simple addition calculation. The assistant used the 'calculate' tool to perform this task, and the result was returned successfully.",
        }
    ],
    "final_answer": 153133.0
}

In non-autonomous mode (also called human in the loop or interactive mode), the user needs to validate/edit the tool arguments and send it back to the agent. In this mode, the agent requires an ChatMessages data model as input and output an ChatMessage (or ChatMessages if return_inputs_with_trajectory is true) back to the user. In that case, the agent ignore the max_iterations argument, as it will only perform one step at a time.

Example:

import synalinks
import asyncio

MAX_ITERATIONS = 5

async def calculate(expression: str):
    """Calculate the result of a mathematical expression.

    Args:
        expression (str): The mathematical expression to calculate, such as
            '2 + 2'. The expression can contain numbers, operators (+, -, *, /),
            parentheses, and spaces.
    """
    if not all(char in "0123456789+-*/(). " for char in expression):
        return {
            "result": None,
            "log": (
                    "Error: invalid characters in expression. "
                    "The expression can only contain numbers, operators (+, -, *, /),"
                    " parentheses, and spaces NOT letters."
                ),
        }
    try:
        # Evaluate the mathematical expression safely
        result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
        return {
            "result": result,
            "log": "Successfully executed",
        }
    except Exception as e:
        return {
            "result": None,
            "log": f"Error: {e}",
        }

async def main():

    language_model = synalinks.LanguageModel(
        model="ollama/mistral",
    )

    tools = [
        synalinks.Tool(calculate),
    ]

    inputs = synalinks.Input(data_model=synalinks.ChatMessages)
    outputs = await synalinks.FunctionCallingAgent(
        tools=tools,
        language_model=language_model,
        return_inputs_with_trajectory=True,
        autonomous=False,
    )(inputs)
    agent = synalinks.Program(
        inputs=inputs,
        outputs=outputs,
        name="math_agent",
        description="A math agent",
    )

    input_messages = synalinks.ChatMessages(
        messages=[
            synalinks.ChatMessage(
                role="user",
                content="How much is 152648 + 485?",
            )
        ]
    )

    for i in range(MAX_ITERATIONS):

        response = await agent(input_messages)

        print("Assistant response (with trajectory):")
        print(response.prettify_json())

        assistant_message = response.get("messages")[-1]

        if not assistant_message.get("tool_calls"):
            break # We stop the loop if the agent didn't call any tool

        # Validate the tool calls arguments (with an UI or CLI)
        # Then re-inject the validated assistant response in the input_messages
        # The corresponding tools will be called by the agent
        # Here we assume everything is okay for the purpose of the demo ^^

        input_messages.messages.append(assistant_message)

if __name__ == "__main__":
    asyncio.run(main())

The FunctionCallingAgent is compatible with MCP tools, here is an example on how to use it:

import synalinks
import asyncio
import litellm

class Query(synalinks.DataModel):
    """Input query data model"""

    query: str = synalinks.Field(
        description="The user query",
    )

class FinalAnswer(synalinks.DataModel):
    """Final answer data model"""

    answer: str = synalinks.Field(
        description="The correct final answer",
    )


async def main():

    language_model = synalinks.LanguageModel(
        model="ollama/mistral",
    )

    mcp_client = synalinks.MultiServerMCPClient(
        {
            "math": {
                "url": "http://localhost:8183/mcp/",
                "transport": "streamable_http",
            },
        }
    )

    tools = await mcp_client.get_tools()

    inputs = synalinks.Input(data_model=Query)
    outputs = await synalinks.FunctionCallingAgent(
        data_model=FinalAnswer,
        tools=tools,
        language_model=language_model,
        max_iterations=5,
        autonomous=True,
    )(inputs)

    agent = synalinks.Program(
        inputs=inputs,
        outputs=outputs,
        name="mcp_math_agent",
        description="A math agent that can use an external calculator",
    )

    input_query = Query(query="How much is 152648 + 485?")
    response = await agent(input_query)

    print(response.prettify_json())


if __name__ == "__main__":
    asyncio.run(main())
Source code in synalinks/src/modules/agents/function_calling_agent.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
@synalinks_export(
    [
        "synalinks.modules.FunctionCallingAgent",
        "synalinks.FunctionCallingAgent",
    ]
)
class FunctionCallingAgent(Module):
    """A trainable parallel function calling agent.

    The agent has 2 different modes:

    - Autonomous: It will execute tools as soon as called.
    - Non-autonomous: It will return the tool arguments as an ChatMessage.

    In *autonomous* mode, the agent accept **any kind of data model input** and perform a final inference to
    eventually format its final answer if a `data_model` or `schema` is provided.

    Example:

    ```python
    import synalinks
    import asyncio

    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    class NumericalFinalAnswer(synalinks.DataModel):
        final_answer: float = synalinks.Field(
            description="The correct final numerical answer",
        )

    async def calculate(expression: str):
        \"""Calculate the result of a mathematical expression.

        Args:
            expression (str): The mathematical expression to calculate, such as
                '2 + 2'. The expression can contain numbers, operators (+, -, *, /),
                parentheses, and spaces.
        \"""
        if not all(char in "0123456789+-*/(). " for char in expression):
            return {
                "result": None,
                "log": (
                        "Error: invalid characters in expression. "
                        "The expression can only contain numbers, operators (+, -, *, /),"
                        " parentheses, and spaces NOT letters."
                    ),
            }
        try:
            # Evaluate the mathematical expression safely
            result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
            return {
                "result": result,
                "log": "Successfully executed",
            }
        except Exception as e:
            return {
                "result": None,
                "log": f"Error: {e}",
            }

    async def main():
        language_model = synalinks.LanguageModel(model="ollama/mistral")

        tools = [
            synalinks.Tool(calculate),
        ]

        inputs = synalinks.Input(data_model=Query)
        outputs = await synalinks.FunctionCallingAgent(
            data_model=NumericalFinalAnswer,
            tools=tools,
            language_model=language_model,
            max_iterations=5,
            autonomous=True,
        )(inputs)
        agent = synalinks.Program(
            inputs=inputs,
            outputs=outputs,
            name="math_agent",
            description="A math agent",
        )

        input_query = Query(query="How much is 152648 + 485?")
        response = await agent(input_query)

        print(response.prettify_json())

    if __name__ == "__main__":
        asyncio.run(main())
    ```

    Result:

    ```json
    {
        "query": "How much is 152648 + 485?",
        "messages": [
            {
            "role": "assistant",
            "content": "Performing simple addition",
            "tool_calls": [
                {
                    "id": "92a3657c-1a45-46e6-8173-df4255b8423b",
                    "name": "calculate",
                    "arguments": {
                        "expression": "152648 + 485"
                        }
                    }
                ]
            },
            {
                "role": "tool",
                "content": {
                    "result": 153133.0,
                    "log": "Successfully executed"
                },
                "tool_call_id": "92a3657c-1a45-46e6-8173-df4255b8423b",
            },
            {
                "role": "assistant",
                "content": "The user has asked for a simple addition calculation. The assistant used the 'calculate' tool to perform this task, and the result was returned successfully.",
            }
        ],
        "final_answer": 153133.0
    }
    ```

    In *non-autonomous* mode (also called human in the loop or interactive mode), the
    user needs to validate/edit the tool arguments and send it back to the agent. In this
    mode, the agent requires an `ChatMessages` data model as input and output an
    `ChatMessage` (or `ChatMessages` if `return_inputs_with_trajectory` is true)
    back to the user. In that case, the agent ignore the `max_iterations` argument,
    as it will only perform one **step at a time**.

    Example:

    ```python
    import synalinks
    import asyncio

    MAX_ITERATIONS = 5

    async def calculate(expression: str):
        \"""Calculate the result of a mathematical expression.

        Args:
            expression (str): The mathematical expression to calculate, such as
                '2 + 2'. The expression can contain numbers, operators (+, -, *, /),
                parentheses, and spaces.
        \"""
        if not all(char in "0123456789+-*/(). " for char in expression):
            return {
                "result": None,
                "log": (
                        "Error: invalid characters in expression. "
                        "The expression can only contain numbers, operators (+, -, *, /),"
                        " parentheses, and spaces NOT letters."
                    ),
            }
        try:
            # Evaluate the mathematical expression safely
            result = round(float(eval(expression, {"__builtins__": None}, {})), 2)
            return {
                "result": result,
                "log": "Successfully executed",
            }
        except Exception as e:
            return {
                "result": None,
                "log": f"Error: {e}",
            }

    async def main():

        language_model = synalinks.LanguageModel(
            model="ollama/mistral",
        )

        tools = [
            synalinks.Tool(calculate),
        ]

        inputs = synalinks.Input(data_model=synalinks.ChatMessages)
        outputs = await synalinks.FunctionCallingAgent(
            tools=tools,
            language_model=language_model,
            return_inputs_with_trajectory=True,
            autonomous=False,
        )(inputs)
        agent = synalinks.Program(
            inputs=inputs,
            outputs=outputs,
            name="math_agent",
            description="A math agent",
        )

        input_messages = synalinks.ChatMessages(
            messages=[
                synalinks.ChatMessage(
                    role="user",
                    content="How much is 152648 + 485?",
                )
            ]
        )

        for i in range(MAX_ITERATIONS):

            response = await agent(input_messages)

            print("Assistant response (with trajectory):")
            print(response.prettify_json())

            assistant_message = response.get("messages")[-1]

            if not assistant_message.get("tool_calls"):
                break # We stop the loop if the agent didn't call any tool

            # Validate the tool calls arguments (with an UI or CLI)
            # Then re-inject the validated assistant response in the input_messages
            # The corresponding tools will be called by the agent
            # Here we assume everything is okay for the purpose of the demo ^^

            input_messages.messages.append(assistant_message)

    if __name__ == "__main__":
        asyncio.run(main())
    ```

    The FunctionCallingAgent is compatible with MCP tools,
    here is an example on how to use it:

    ```python
    import synalinks
    import asyncio
    import litellm

    class Query(synalinks.DataModel):
        \"""Input query data model\"""

        query: str = synalinks.Field(
            description="The user query",
        )

    class FinalAnswer(synalinks.DataModel):
        \"""Final answer data model\"""

        answer: str = synalinks.Field(
            description="The correct final answer",
        )


    async def main():

        language_model = synalinks.LanguageModel(
            model="ollama/mistral",
        )

        mcp_client = synalinks.MultiServerMCPClient(
            {
                "math": {
                    "url": "http://localhost:8183/mcp/",
                    "transport": "streamable_http",
                },
            }
        )

        tools = await mcp_client.get_tools()

        inputs = synalinks.Input(data_model=Query)
        outputs = await synalinks.FunctionCallingAgent(
            data_model=FinalAnswer,
            tools=tools,
            language_model=language_model,
            max_iterations=5,
            autonomous=True,
        )(inputs)

        agent = synalinks.Program(
            inputs=inputs,
            outputs=outputs,
            name="mcp_math_agent",
            description="A math agent that can use an external calculator",
        )

        input_query = Query(query="How much is 152648 + 485?")
        response = await agent(input_query)

        print(response.prettify_json())


    if __name__ == "__main__":
        asyncio.run(main())
    ```

    """

    def __init__(
        self,
        schema=None,
        data_model=None,
        language_model=None,
        prompt_template=None,
        static_system_prompt=None,
        examples=None,
        instructions=None,
        use_inputs_schema=False,
        use_outputs_schema=False,
        tools=None,
        autonomous=True,
        return_inputs_with_trajectory=True,
        max_iterations=5,
        name=None,
        description=None,
    ):
        super().__init__(
            name=name,
            description=description,
        )
        if not schema and data_model:
            schema = data_model.get_schema()
        self.schema = schema

        self.prompt_template = prompt_template
        if not static_system_prompt:
            static_system_prompt = get_default_static_prompt()
        self.static_system_prompt = static_system_prompt

        if not instructions:
            instructions = get_default_instructions()
        self.instructions = instructions

        self.examples = examples
        self.use_inputs_schema = use_inputs_schema
        self.use_outputs_schema = use_outputs_schema
        self.language_model = language_model

        self.tools = {}
        if not tools:
            raise ValueError("You must set the `tools` argument")
        for tool in tools:
            self.tools[tool.name] = tool
        tool_calls_schema = dynamic_tool_calls(tools=tools)

        self.autonomous = autonomous
        self.return_inputs_with_trajectory = return_inputs_with_trajectory
        self.max_iterations = max_iterations

        if self.autonomous:
            self.tool_calls_generators = []
            for i in range(self.max_iterations):
                self.tool_calls_generators.append(
                    ChainOfThought(
                        schema=tool_calls_schema,
                        prompt_template=self.prompt_template,
                        static_system_prompt=self.static_system_prompt,
                        examples=self.examples,
                        instructions=self.instructions,
                        use_inputs_schema=self.use_inputs_schema,
                        use_outputs_schema=self.use_outputs_schema,
                        language_model=self.language_model,
                        name=self.name + f"_tool_calls_generator_{i}",
                    )
                )
        else:
            self.tool_calls_generator = ChainOfThought(
                schema=tool_calls_schema,
                prompt_template=self.prompt_template,
                static_system_prompt=self.static_system_prompt,
                examples=self.examples,
                instructions=self.instructions,
                use_inputs_schema=self.use_inputs_schema,
                use_outputs_schema=self.use_outputs_schema,
                language_model=self.language_model,
                name=self.name + "_tool_calls_generator",
            )

        if self.schema and self.autonomous:
            self.final_generator = Generator(
                schema=self.schema,
                language_model=self.language_model,
                static_system_prompt=self.static_system_prompt,
                instructions=self.instructions,
                return_inputs=self.return_inputs_with_trajectory,
                name=self.name + "_final_generator",
            )

    async def call(self, inputs, training=False):
        if not inputs:
            return None
        if self.autonomous:
            if not is_chat_messages(inputs):
                trajectory = await ops.concat(
                    inputs,
                    ChatMessages(),
                    name=self.name + "_trajectory",
                )
            else:
                trajectory = inputs
        else:
            if not is_chat_messages(inputs):
                raise ValueError(
                    "In interactive mode, the FunctionCallingAgent "
                    "needs an ChatMessages as inputs"
                )
            trajectory = inputs

        agent_messages = trajectory.get("messages")

        if self.autonomous:
            for i in range(self.max_iterations):
                tool_calls = await self.tool_calls_generators[i](trajectory)

                if not tool_calls:
                    continue

                assistant_message = ChatMessage(
                    role=ChatRole.ASSISTANT,
                    content=tool_calls.get("thinking", ""),
                )

                if not tool_calls.get("tool_calls"):
                    agent_messages.append(assistant_message.get_json())
                    break

                tasks = []
                tool_calls_ids = []

                for tool_call in tool_calls.get("tool_calls"):
                    tool_name = tool_call.get("tool_name")
                    tools_arguments = out_mask_json(tool_call, mask=["tool_name"])
                    tool_call_id = str(uuid.uuid4())
                    tool_calls_ids.append(tool_call_id)
                    assistant_message.tool_calls.append(
                        ToolCall(
                            id=tool_call_id,
                            name=tool_name,
                            arguments=tools_arguments,
                        )
                    )
                    tasks.append(self.tools[tool_name](**tools_arguments))

                agent_messages.append(assistant_message.get_json())

                tool_results = await asyncio.gather(*tasks)
                for j, tool_result in enumerate(tool_results):
                    tool_call_id = tool_calls_ids[j]
                    agent_messages.append(
                        ChatMessage(
                            role=ChatRole.TOOL,
                            tool_call_id=tool_call_id,
                            content=tool_result,
                        ).get_json()
                    )

                trajectory.update({"messages": agent_messages})
            if self.schema:
                return await self.final_generator(trajectory)
            else:
                return trajectory
        else:
            if len(agent_messages) > 0:
                if agent_messages[-1].get("role") == ChatRole.ASSISTANT:
                    tasks = []
                    tool_calls_ids = []

                    tool_calls = agent_messages[-1].get("tool_calls")
                    for tool_call in tool_calls:
                        tool_name = tool_call.get("name")
                        tools_arguments = tool_call.get("arguments")
                        tool_call_id = tool_call.get("id")
                        tool_calls_ids.append(tool_call_id)
                        tasks.append(self.tools[tool_name](**tools_arguments))

                    tool_results = await asyncio.gather(*tasks)
                    for j, tool_result in enumerate(tool_results):
                        tool_call_id = tool_calls_ids[j]
                        agent_messages.append(
                            ChatMessage(
                                role=ChatRole.TOOL,
                                tool_call_id=tool_call_id,
                                content=tool_result,
                            ).get_json()
                        )

            trajectory.update({"messages": agent_messages})

            tool_calls = await self.tool_calls_generator(trajectory)

            assistant_message = ChatMessage(
                role=ChatRole.ASSISTANT,
                content=tool_calls.get("thinking", ""),
                tool_calls=[],
            )

            for tool_call in tool_calls.get("tool_calls", []):
                tool_name = tool_call.get("tool_name")
                tools_arguments = out_mask_json(tool_call, mask=["tool_name"])
                tool_call_id = str(uuid.uuid4())

                assistant_message.tool_calls.append(
                    ToolCall(
                        id=tool_call_id,
                        name=tool_name,
                        arguments=tools_arguments,
                    )
                )

            agent_messages.append(assistant_message.get_json())
            trajectory.update({"messages": agent_messages})

            if self.return_inputs_with_trajectory:
                return JsonDataModel(
                    json=trajectory.get_json(),
                    schema=ChatMessages.get_schema(),
                    name=self.name,
                )
            else:
                return JsonDataModel(
                    json=assistant_message.get_json(),
                    schema=ChatMessage.get_schema(),
                    name=self.name,
                )

    async def compute_output_spec(self, inputs, training=False):
        if self.autonomous:
            for i in range(self.max_iterations):
                _ = await self.tool_calls_generators[i](inputs)
            if self.schema:
                return await self.final_generator(inputs)
            else:
                return SymbolicDataModel(
                    schema=ChatMessages.get_schema(),
                    name=self.name,
                )
        else:
            if not is_chat_messages(inputs):
                raise ValueError(
                    "In interactive mode, the FunctionCallingAgent "
                    "needs an ChatMessages as inputs"
                )

            _ = await self.tool_calls_generator(inputs)

            if self.return_inputs_with_trajectory:
                return SymbolicDataModel(
                    schema=ChatMessages.get_schema(),
                    name=self.name,
                )
            else:
                return SymbolicDataModel(
                    schema=ChatMessage.get_schema(),
                    name=self.name,
                )

    def get_config(self):
        config = {
            "schema": self.schema,
            "prompt_template": self.prompt_template,
            "static_system_prompt": self.static_system_prompt,
            "examples": self.examples,
            "instructions": self.instructions,
            "use_inputs_schema": self.use_inputs_schema,
            "use_outputs_schema": self.use_outputs_schema,
            "autonomous": self.autonomous,
            "max_iterations": self.max_iterations,
            "return_inputs_with_trajectory": self.return_inputs_with_trajectory,
            "name": self.name,
            "description": self.description,
        }
        language_model_config = {
            "language_model": serialization_lib.serialize_synalinks_object(
                self.language_model,
            )
        }
        tools_config = {
            "tools": [
                serialization_lib.serialize_synalinks_object(tool)
                for tool in self.tools.values()
            ]
        }
        return {**config, **language_model_config, **tools_config}

    @classmethod
    def from_config(cls, config):
        tools = [
            serialization_lib.deserialize_synalinks_object(tool)
            for tool in config.pop("tools")
        ]
        language_model = serialization_lib.deserialize_synalinks_object(
            config.pop("language_model")
        )
        return cls(
            language_model=language_model,
            tools=tools,
            **config,
        )

get_default_instructions()

The default parallel agent instructions.

Source code in synalinks/src/modules/agents/function_calling_agent.py
def get_default_instructions() -> List[str]:
    """The default parallel agent instructions."""
    return [
        "Think step by step: Use the thinking field to elaborate what you observe and what do you need to accomplish next",  # noqa: E501
        "Reflect on prior steps: Review your previous actions and their outcomes to avoid unnecessary repetition.",  # noqa: E501
        "Avoid unnecessary actions: If you already have enough information to complete the user task, return an empty tool calls array.",  # noqa: E501
    ]