Embedding Models API
EmbeddingModel
Bases: SynalinksSaveable
An embedding model API wrapper.
Embedding models are a type of machine learning model used to convert high-dimensional data, such as text into lower-dimensional vector representations while preserving the semantic meaning and relationships within the data. These vector representations, known as embeddings, allow for more efficient and effective processing in various tasks.
Many providers are available like OpenAI, Azure OpenAI, Vertex AI or Ollama.
For the complete list of models, please refer to the providers documentation.
Using OpenAI models
import synalinks
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
embedding_model = synalinks.EmbeddingModel(
model="openai/text-embedding-ada-002",
)
Using Azure OpenAI models
import synalinks
import os
os.environ["AZURE_API_KEY"] = "your-api-key"
os.environ["AZURE_API_BASE"] = "your-api-base"
os.environ["AZURE_API_VERSION"] = "your-api-version"
embedding_model = synalinks.EmbeddingModel(
model="azure/<your_deployment_name>",
)
Using VertexAI models
import synalinks
import os
embedding_model = synalinks.EmbeddingModel(
model="vertex_ai/text-embedding-004",
vertex_project = "hardy-device-38811", # Your Project ID
vertex_location = "us-central1", # Project location
)
Using Ollama models
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str
|
The model to use. |
None
|
api_base
|
str
|
Optional. The endpoint to use. |
None
|
retry
|
int
|
Optional. The number of retry. |
5
|
Source code in synalinks/src/embedding_models/embedding_model.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
__call__(texts, **kwargs)
async
Call method to get dense embeddings vectors
Parameters:
Name | Type | Description | Default |
---|---|---|---|
texts
|
list
|
A list of texts to embed. |
required |
Returns:
Type | Description |
---|---|
list
|
The list of corresponding vectors. |