Skip to content

The SymbolicDataModel class

SymbolicDataModel

A symbolic backend-independent data model.

A SymbolicDataModel is a container for a JSON schema and can be used to represent data structures in a backend-agnostic way. It can record history and is used in symbolic operations (in the Functional API and to compute output specs).

A "symbolic data model" can be understood as a placeholder for data specification, it does not contain any actual data, only a schema. It can be used for building Functional models, but it cannot be used in actual computations.

Parameters:

Name Type Description Default
data_model DataModel

Optional. The data_model used to extract the schema.

None
schema dict

Optional. The JSON schema to be used. If the schema is not provided, the data_model argument should be used to infer it.

None
record_history bool

Optional. Boolean indicating if the history should be recorded. Defaults to True.

True
name str

Optional. A unique name for the data model. Automatically generated if not set.

None

Examples:

Creating a SymbolicDataModel with a backend data model metaclass:

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

data_model = SymbolicDataModel(data_model=Query)

Creating a SymbolicDataModel with a backend data model metaclass's schema:

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

data_model = SymbolicDataModel(schema=Query.get_schema())

Creating a SymbolicDataModel with to_symbolic_data_model():

using a backend data model metaclass

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

data_model = Query.to_symbolic_data_model()
Source code in synalinks/src/backend/common/symbolic_data_model.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@synalinks_export("synalinks.SymbolicDataModel")
class SymbolicDataModel:
    """A symbolic backend-independent data model.

    A `SymbolicDataModel` is a container for a JSON schema and can be used to represent
        data structures in a backend-agnostic way. It can record history and is used in
        symbolic operations (in the Functional API and to compute output specs).

    A "symbolic data model" can be understood as a placeholder for data specification,
        it does not contain any actual data, only a schema. It can be used for building
        Functional models, but it cannot be used in actual computations.

    Args:
        data_model (DataModel): Optional. The data_model used to extract the schema.
        schema (dict): Optional. The JSON schema to be used. If the schema is not
            provided, the data_model argument should be used to infer it.
        record_history (bool): Optional. Boolean indicating if the history
            should be recorded. Defaults to `True`.
        name (str): Optional. A unique name for the data model. Automatically generated
            if not set.

    Examples:

    **Creating a `SymbolicDataModel` with a backend data model metaclass:**

    ```python
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    data_model = SymbolicDataModel(data_model=Query)
    ```

    **Creating a `SymbolicDataModel` with a backend data model metaclass's schema:**

    ```python
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    data_model = SymbolicDataModel(schema=Query.get_schema())
    ```

    **Creating a `SymbolicDataModel` with `to_symbolic_data_model()`:**

    using a backend data model metaclass

    ```python
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    data_model = Query.to_symbolic_data_model()
    ```
    """

    def __init__(
        self,
        data_model=None,
        schema=None,
        record_history=True,
        name=None,
    ):
        self.name = name or auto_name(self.__class__.__name__)
        self._record_history = record_history
        self._schema = None
        if not schema and not data_model:
            raise ValueError(
                "You should specify at least one argument between "
                "`data_model` or `schema`"
            )
        if schema and data_model:
            if not is_schema_equal(schema, data_model.get_schema()):
                raise ValueError(
                    "Attempting to create a SymbolicDataModel "
                    "with both `schema` and `data_model` argument "
                    "but their schemas are incompatible "
                    f"received schema={schema} and "
                    f"data_model.get_schema()={data_model.get_schema()}."
                )
            self._schema = standardize_schema(schema)
        else:
            if schema:
                self._schema = standardize_schema(schema)
            if data_model:
                self._schema = standardize_schema(data_model.get_schema())

    @property
    def record_history(self):
        """Whether the history is being recorded."""
        return self._record_history

    @record_history.setter
    def record_history(self, value):
        self._record_history = value

    def get_schema(self):
        """Gets the JSON schema of the data model.

        Returns:
            (dict): The JSON schema.
        """
        return self._schema

    def get_json(self):
        """Gets the current value of the JSON object (impossible in `SymbolicDataModel`).

        Implemented to help the user to identifying issues.

        Raises:
            ValueError: The help message.
        """
        raise ValueError(
            "Attempting to retrieve the JSON value from a symbolic data model "
            "this operation is not possible, make sure that your `call()` "
            "is correctly implemented, if so then you likely need to implement "
            " `compute_output_spec()` in your subclassed module."
        )

    def prettify_schema(self):
        """Get a pretty version of the JSON schema for display.

        Returns:
            (dict): The indented JSON schema.
        """
        return json.dumps(self._schema, indent=2)

    def __repr__(self):
        return f"<SymbolicDataModel schema={self._schema}, name={self.name}>"

    def __add__(self, other):
        """Concatenates this data model with another.

        Args:
            other (SymbolicDataModel | DataModel):
                The other data model to concatenate with.

        Returns:
            (SymbolicDataModel): The concatenated data model.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Concat().symbolic_call(self, other)
        )

    def __radd__(self, other):
        """Concatenates (reverse) another data model with this one.

        Args:
            other (SymbolicDataModel | DataModel):
                The other data model to concatenate with.

        Returns:
            (SymbolicDataModel): The concatenated data model.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Concat().symbolic_call(other, self)
        )

    def __and__(self, other):
        """Perform a `logical_and` with another data model.

        If one of them is None, output None. If both are provided,
        then concatenates this data model with the other.

        Args:
            other (SymbolicDataModel | DataModel): The other data model to concatenate
                with.

        Returns:
            (SymbolicDataModel | None): The concatenated data model or None
                based on the `logical_and` table.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.And().symbolic_call(self, other)
        )

    def __rand__(self, other):
        """Perform a `logical_and` (reverse) with another data model.

        If one of them is None, output None. If both are provided,
        then concatenates the other data model with this one.

        Args:
            other (SymbolicDataModel | DataModel): The other data model to concatenate
                with.

        Returns:
            (SymbolicDataModel | None): The concatenated data model or None
                based on the `logical_and` table.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.And().symbolic_call(other, self)
        )

    def __or__(self, other):
        """Perform a `logical_or` with another data model

        If one of them is None, output the other one. If both are provided,
        then concatenates this data model with the other.

        Args:
            other (SymbolicDataModel): The other data model to concatenate with.

        Returns:
            (SymbolicDataModel | None): The concatenation of data model if both are
                provided, or the non-None data model or None if none are provided.
                (See `logical_or` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Or().symbolic_call(self, other)
        )

    def __ror__(self, other):
        """Perform a `logical_or` (reverse) with another data model

        If one of them is None, output the other one. If both are provided,
        then concatenates the other data model with this one.

        Args:
            other (SymbolicDataModel | DataModel): The other data model to concatenate
                with.

        Returns:
            (SymbolicDataModel | None): The concatenation of data model if both are
                provided, or the non-None data model or None if none are provided.
                (See `logical_or` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Or().symbolic_call(other, self)
        )

    def __xor__(self, other):
        """Perform a `logical_xor` with another data model.

        If one of them is `None`, output the other one. If both are provided,
        then the output is `None`.

        Args:
            other (SymbolicDataModel): The other data model to concatenate with.

        Returns:
            (SymbolicDataModel | None): `None` if both are
                provided, or the non-None data model if one is provided
                or `None` if none are provided. (See `logical_xor` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Xor().symbolic_call(self, other)
        )

    def __rxor__(self, other):
        """Perform a `logical_xor` (reverse) with another data model.

        If one of them is None, output the other one. If both are provided,
        then concatenates the other data model with this one.

        Args:
            other (SymbolicDataModel | DataModel): The other data model to concatenate
                with.

        Returns:
            (SymbolicDataModel | None): `None` if both are
                provided, or the non-None data model if one is provided
                or `None` if none are provided. (See `logical_xor` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Xor().symbolic_call(other, self)
        )

    def factorize(self):
        """Factorizes the data model.

        Returns:
            (SymbolicDataModel): The factorized data model.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Factorize().symbolic_call(self)
        )

    def in_mask(self, mask=None, recursive=True):
        """Applies a mask to **keep only** specified keys of the data model.

        Args:
            mask (list): The mask to be applied (list of keys).
            recursive (bool): Optional. Whether to apply the mask recursively.
                Defaults to `True`.

        Returns:
            (SymbolicDataModel): The data model with the mask applied.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.InMask(mask=mask, recursive=True).symbolic_call(self)
        )

    def out_mask(self, mask=None, recursive=True):
        """Applies an mask to **remove** specified keys of the data model.

        Args:
            mask (list): The mask to be applied (list of keys).
            recursive (bool): Optional. Whether to apply the mask recursively.
                Defaults to `True`.

        Returns:
            (SymbolicDataModel): The data model with the mask applied.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.OutMask(mask=mask, recursive=True).symbolic_call(self)
        )

    def prefix(self, prefix=None):
        """Add a prefix to **all** the data model fields (non-recursive).

        Args:
            prefix (str): the prefix to add

        Returns:
            (SymbolicDataModel): The data model with the prefix added.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Prefix(prefix=prefix).symbolic_call(self)
        )

    def suffix(self, suffix=None):
        """Add a suffix to **all** the data model fields (non-recursive).

        Args:
            suffix (str): the suffix to add

        Returns:
            (SymbolicDataModel): The data model with the suffix added.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Suffix(suffix=suffix).symbolic_call(self)
        )

    def get(self, key, default_value=None):
        """Get wrapper to make easier to access fields.

        Implemented to help the user to identifying issues.

        Args:
            key (str): The key to access.

        Raises:
            ValueError: The help message.
        """
        raise ValueError(
            f"Attempting to get '{key}' from a symbolic data model "
            "this operation is not possible, make sure that your `call()` "
            "is correctly implemented, if so then you likely need to implement "
            " `compute_output_spec()` in your subclassed module."
        )

    def update(self, kv_dict):
        """Update wrapper to make easier to modify fields.

        Implemented to help the user to identifying issues.

        Args:
            kv_dict (dict): The key/value dict to update.

        Raises:
            ValueError: The help message.
        """
        raise ValueError(
            f"Attempting to update keys {list(kv_dict.keys())} from a symbolic "
            "data model this operation is not possible, make sure that your `call()` "
            "is correctly implemented, if so then you likely need to implement "
            " `compute_output_spec()` in your subclassed module."
        )

    def clone(self, name=None):
        """Clone a symbolic data model and give it a different name."""
        import copy

        clone = copy.deepcopy(self)
        if name:
            clone.name = name
        else:
            clone.name = auto_name(self.name + "_clone")
        return clone

record_history property writable

Whether the history is being recorded.

__add__(other)

Concatenates this data model with another.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel

The concatenated data model.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __add__(self, other):
    """Concatenates this data model with another.

    Args:
        other (SymbolicDataModel | DataModel):
            The other data model to concatenate with.

    Returns:
        (SymbolicDataModel): The concatenated data model.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Concat().symbolic_call(self, other)
    )

__and__(other)

Perform a logical_and with another data model.

If one of them is None, output None. If both are provided, then concatenates this data model with the other.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

The concatenated data model or None based on the logical_and table.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __and__(self, other):
    """Perform a `logical_and` with another data model.

    If one of them is None, output None. If both are provided,
    then concatenates this data model with the other.

    Args:
        other (SymbolicDataModel | DataModel): The other data model to concatenate
            with.

    Returns:
        (SymbolicDataModel | None): The concatenated data model or None
            based on the `logical_and` table.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.And().symbolic_call(self, other)
    )

__or__(other)

Perform a logical_or with another data model

If one of them is None, output the other one. If both are provided, then concatenates this data model with the other.

Parameters:

Name Type Description Default
other SymbolicDataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

The concatenation of data model if both are provided, or the non-None data model or None if none are provided. (See logical_or table).

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __or__(self, other):
    """Perform a `logical_or` with another data model

    If one of them is None, output the other one. If both are provided,
    then concatenates this data model with the other.

    Args:
        other (SymbolicDataModel): The other data model to concatenate with.

    Returns:
        (SymbolicDataModel | None): The concatenation of data model if both are
            provided, or the non-None data model or None if none are provided.
            (See `logical_or` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Or().symbolic_call(self, other)
    )

__radd__(other)

Concatenates (reverse) another data model with this one.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel

The concatenated data model.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __radd__(self, other):
    """Concatenates (reverse) another data model with this one.

    Args:
        other (SymbolicDataModel | DataModel):
            The other data model to concatenate with.

    Returns:
        (SymbolicDataModel): The concatenated data model.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Concat().symbolic_call(other, self)
    )

__rand__(other)

Perform a logical_and (reverse) with another data model.

If one of them is None, output None. If both are provided, then concatenates the other data model with this one.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

The concatenated data model or None based on the logical_and table.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __rand__(self, other):
    """Perform a `logical_and` (reverse) with another data model.

    If one of them is None, output None. If both are provided,
    then concatenates the other data model with this one.

    Args:
        other (SymbolicDataModel | DataModel): The other data model to concatenate
            with.

    Returns:
        (SymbolicDataModel | None): The concatenated data model or None
            based on the `logical_and` table.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.And().symbolic_call(other, self)
    )

__ror__(other)

Perform a logical_or (reverse) with another data model

If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

The concatenation of data model if both are provided, or the non-None data model or None if none are provided. (See logical_or table).

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __ror__(self, other):
    """Perform a `logical_or` (reverse) with another data model

    If one of them is None, output the other one. If both are provided,
    then concatenates the other data model with this one.

    Args:
        other (SymbolicDataModel | DataModel): The other data model to concatenate
            with.

    Returns:
        (SymbolicDataModel | None): The concatenation of data model if both are
            provided, or the non-None data model or None if none are provided.
            (See `logical_or` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Or().symbolic_call(other, self)
    )

__rxor__(other)

Perform a logical_xor (reverse) with another data model.

If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

None if both are provided, or the non-None data model if one is provided or None if none are provided. (See logical_xor table).

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __rxor__(self, other):
    """Perform a `logical_xor` (reverse) with another data model.

    If one of them is None, output the other one. If both are provided,
    then concatenates the other data model with this one.

    Args:
        other (SymbolicDataModel | DataModel): The other data model to concatenate
            with.

    Returns:
        (SymbolicDataModel | None): `None` if both are
            provided, or the non-None data model if one is provided
            or `None` if none are provided. (See `logical_xor` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Xor().symbolic_call(other, self)
    )

__xor__(other)

Perform a logical_xor with another data model.

If one of them is None, output the other one. If both are provided, then the output is None.

Parameters:

Name Type Description Default
other SymbolicDataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

None if both are provided, or the non-None data model if one is provided or None if none are provided. (See logical_xor table).

Source code in synalinks/src/backend/common/symbolic_data_model.py
def __xor__(self, other):
    """Perform a `logical_xor` with another data model.

    If one of them is `None`, output the other one. If both are provided,
    then the output is `None`.

    Args:
        other (SymbolicDataModel): The other data model to concatenate with.

    Returns:
        (SymbolicDataModel | None): `None` if both are
            provided, or the non-None data model if one is provided
            or `None` if none are provided. (See `logical_xor` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Xor().symbolic_call(self, other)
    )

clone(name=None)

Clone a symbolic data model and give it a different name.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def clone(self, name=None):
    """Clone a symbolic data model and give it a different name."""
    import copy

    clone = copy.deepcopy(self)
    if name:
        clone.name = name
    else:
        clone.name = auto_name(self.name + "_clone")
    return clone

factorize()

Factorizes the data model.

Returns:

Type Description
SymbolicDataModel

The factorized data model.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def factorize(self):
    """Factorizes the data model.

    Returns:
        (SymbolicDataModel): The factorized data model.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Factorize().symbolic_call(self)
    )

get(key, default_value=None)

Get wrapper to make easier to access fields.

Implemented to help the user to identifying issues.

Parameters:

Name Type Description Default
key str

The key to access.

required

Raises:

Type Description
ValueError

The help message.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def get(self, key, default_value=None):
    """Get wrapper to make easier to access fields.

    Implemented to help the user to identifying issues.

    Args:
        key (str): The key to access.

    Raises:
        ValueError: The help message.
    """
    raise ValueError(
        f"Attempting to get '{key}' from a symbolic data model "
        "this operation is not possible, make sure that your `call()` "
        "is correctly implemented, if so then you likely need to implement "
        " `compute_output_spec()` in your subclassed module."
    )

get_json()

Gets the current value of the JSON object (impossible in SymbolicDataModel).

Implemented to help the user to identifying issues.

Raises:

Type Description
ValueError

The help message.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def get_json(self):
    """Gets the current value of the JSON object (impossible in `SymbolicDataModel`).

    Implemented to help the user to identifying issues.

    Raises:
        ValueError: The help message.
    """
    raise ValueError(
        "Attempting to retrieve the JSON value from a symbolic data model "
        "this operation is not possible, make sure that your `call()` "
        "is correctly implemented, if so then you likely need to implement "
        " `compute_output_spec()` in your subclassed module."
    )

get_schema()

Gets the JSON schema of the data model.

Returns:

Type Description
dict

The JSON schema.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def get_schema(self):
    """Gets the JSON schema of the data model.

    Returns:
        (dict): The JSON schema.
    """
    return self._schema

in_mask(mask=None, recursive=True)

Applies a mask to keep only specified keys of the data model.

Parameters:

Name Type Description Default
mask list

The mask to be applied (list of keys).

None
recursive bool

Optional. Whether to apply the mask recursively. Defaults to True.

True

Returns:

Type Description
SymbolicDataModel

The data model with the mask applied.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def in_mask(self, mask=None, recursive=True):
    """Applies a mask to **keep only** specified keys of the data model.

    Args:
        mask (list): The mask to be applied (list of keys).
        recursive (bool): Optional. Whether to apply the mask recursively.
            Defaults to `True`.

    Returns:
        (SymbolicDataModel): The data model with the mask applied.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.InMask(mask=mask, recursive=True).symbolic_call(self)
    )

out_mask(mask=None, recursive=True)

Applies an mask to remove specified keys of the data model.

Parameters:

Name Type Description Default
mask list

The mask to be applied (list of keys).

None
recursive bool

Optional. Whether to apply the mask recursively. Defaults to True.

True

Returns:

Type Description
SymbolicDataModel

The data model with the mask applied.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def out_mask(self, mask=None, recursive=True):
    """Applies an mask to **remove** specified keys of the data model.

    Args:
        mask (list): The mask to be applied (list of keys).
        recursive (bool): Optional. Whether to apply the mask recursively.
            Defaults to `True`.

    Returns:
        (SymbolicDataModel): The data model with the mask applied.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.OutMask(mask=mask, recursive=True).symbolic_call(self)
    )

prefix(prefix=None)

Add a prefix to all the data model fields (non-recursive).

Parameters:

Name Type Description Default
prefix str

the prefix to add

None

Returns:

Type Description
SymbolicDataModel

The data model with the prefix added.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def prefix(self, prefix=None):
    """Add a prefix to **all** the data model fields (non-recursive).

    Args:
        prefix (str): the prefix to add

    Returns:
        (SymbolicDataModel): The data model with the prefix added.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Prefix(prefix=prefix).symbolic_call(self)
    )

prettify_schema()

Get a pretty version of the JSON schema for display.

Returns:

Type Description
dict

The indented JSON schema.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def prettify_schema(self):
    """Get a pretty version of the JSON schema for display.

    Returns:
        (dict): The indented JSON schema.
    """
    return json.dumps(self._schema, indent=2)

suffix(suffix=None)

Add a suffix to all the data model fields (non-recursive).

Parameters:

Name Type Description Default
suffix str

the suffix to add

None

Returns:

Type Description
SymbolicDataModel

The data model with the suffix added.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def suffix(self, suffix=None):
    """Add a suffix to **all** the data model fields (non-recursive).

    Args:
        suffix (str): the suffix to add

    Returns:
        (SymbolicDataModel): The data model with the suffix added.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Suffix(suffix=suffix).symbolic_call(self)
    )

update(kv_dict)

Update wrapper to make easier to modify fields.

Implemented to help the user to identifying issues.

Parameters:

Name Type Description Default
kv_dict dict

The key/value dict to update.

required

Raises:

Type Description
ValueError

The help message.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def update(self, kv_dict):
    """Update wrapper to make easier to modify fields.

    Implemented to help the user to identifying issues.

    Args:
        kv_dict (dict): The key/value dict to update.

    Raises:
        ValueError: The help message.
    """
    raise ValueError(
        f"Attempting to update keys {list(kv_dict.keys())} from a symbolic "
        "data model this operation is not possible, make sure that your `call()` "
        "is correctly implemented, if so then you likely need to implement "
        " `compute_output_spec()` in your subclassed module."
    )

any_symbolic_data_models(args=None, kwargs=None)

Checks if any of the arguments are symbolic data models.

Parameters:

Name Type Description Default
args tuple

Optional. The positional arguments to check.

None
kwargs dict

Optional. The keyword arguments to check.

None

Returns:

Type Description
bool

True if any of the arguments are symbolic data models, False otherwise.

Source code in synalinks/src/backend/common/symbolic_data_model.py
def any_symbolic_data_models(args=None, kwargs=None):
    """Checks if any of the arguments are symbolic data models.

    Args:
        args (tuple): Optional. The positional arguments to check.
        kwargs (dict): Optional. The keyword arguments to check.

    Returns:
        (bool): True if any of the arguments are symbolic data models, False otherwise.
    """
    args = args or ()
    kwargs = kwargs or {}
    for x in tree.flatten((args, kwargs)):
        if is_symbolic_data_model(x):
            return True
    return False

is_symbolic_data_model(x)

Returns whether x is a synalinks data model.

A "synalinks data model" is a symbolic data model, such as a data model that was created via Input(). A "symbolic data model" can be understood as a placeholder for data specification -- it does not contain any actual data, only a schema. It can be used for building Functional models, but it cannot be used in actual computations.

Parameters:

Name Type Description Default
x any

The object to check.

required

Returns:

Type Description
bool

True if x is a symbolic data model, False otherwise.

Source code in synalinks/src/backend/common/symbolic_data_model.py
@synalinks_export(
    [
        "synalinks.utils.is_symbolic_data_model",
        "synalinks.backend.is_symbolic_data_model",
    ]
)
def is_symbolic_data_model(x):
    """Returns whether `x` is a synalinks data model.

    A "synalinks data model" is a *symbolic data model*, such as a data model
    that was created via `Input()`. A "symbolic data model"
    can be understood as a placeholder for data specification -- it does not
    contain any actual data, only a schema.
    It can be used for building Functional models, but it
    cannot be used in actual computations.

    Args:
        x (any): The object to check.

    Returns:
        (bool): True if `x` is a symbolic data model, False otherwise.
    """
    return isinstance(x, SymbolicDataModel)