The SymbolicDataModel class
SymbolicDataModel
A symbolic backend-independent data model.
A SymbolicDataModel
is a container for a JSON schema and can be used to represent
data structures in a backend-agnostic way. It can record history and is used in
symbolic operations (in the Functional API and to compute output specs).
A "symbolic data model" can be understood as a placeholder for data specification, it does not contain any actual data, only a schema. It can be used for building Functional models, but it cannot be used in actual computations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_model
|
DataModel
|
Optional. The data_model used to extract the schema. |
None
|
schema
|
dict
|
Optional. The JSON schema to be used. If the schema is not provided, the data_model argument should be used to infer it. |
None
|
record_history
|
bool
|
Optional. Boolean indicating if the history
should be recorded. Defaults to |
True
|
name
|
str
|
Optional. A unique name for the data model. Automatically generated if not set. |
None
|
Examples:
Creating a SymbolicDataModel
with a backend data model metaclass:
class Query(synalinks.DataModel):
query: str = synalinks.Field(
description="The user query",
)
data_model = SymbolicDataModel(data_model=Query)
Creating a SymbolicDataModel
with a backend data model metaclass's schema:
class Query(synalinks.DataModel):
query: str = synalinks.Field(
description="The user query",
)
data_model = SymbolicDataModel(schema=Query.schema())
Creating a SymbolicDataModel
with to_symbolic_data_model()
:
using a backend data model metaclass
class Query(synalinks.DataModel):
query: str = synalinks.Field(
description="The user query",
)
data_model = Query.to_symbolic_data_model()
Source code in synalinks/src/backend/common/symbolic_data_model.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
name
property
writable
The name of the data model.
record_history
property
writable
Whether the history is being recorded.
__add__(other)
Concatenates this data model with another.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The concatenated data model. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
__and__(other)
Perform a logical_and
with another data model.
If one of them is None, output None. If both are provided, then concatenates this data model with the other.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenated data model or None
based on the |
Source code in synalinks/src/backend/common/symbolic_data_model.py
__or__(other)
Perform a logical_or
with another data model
If one of them is None, output the other one. If both are provided, then concatenates this data model with the other.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenation of data model if both are
provided, or the non-None data model or None if none are provided.
(See |
Source code in synalinks/src/backend/common/symbolic_data_model.py
__radd__(other)
Concatenates (reverse) another data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The concatenated data model. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
__rand__(other)
Perform a logical_and
(reverse) with another data model.
If one of them is None, output None. If both are provided, then concatenates the other data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenated data model or None
based on the |
Source code in synalinks/src/backend/common/symbolic_data_model.py
__ror__(other)
Perform a logical_or
(reverse) with another data model
If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenation of data model if both are
provided, or the non-None data model or None if none are provided.
(See |
Source code in synalinks/src/backend/common/symbolic_data_model.py
factorize()
Factorizes the data model.
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The factorized data model. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
get(key)
Get wrapper to make easier to access fields.
Implemented to help the user to identifying issues.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
str
|
The key to access. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
The help message. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
in_mask(mask=None, recursive=True)
Applies a mask to keep only specified keys of the data model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
list
|
The mask to be applied (list of keys). |
None
|
recursive
|
bool
|
Optional. Whether to apply the mask recursively.
Defaults to |
True
|
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The data model with the mask applied. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
json(key)
Alias for the JSON object's value (impossible in SymbolicDataModel
).
Implemented to help the user to identifying issues.
Raises:
Type | Description |
---|---|
ValueError
|
The help message. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
out_mask(mask=None, recursive=True)
Applies an output mask to remove specified keys of the data model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
list
|
The mask to be applied (list of keys). |
None
|
recursive
|
bool
|
Optional. Whether to apply the mask recursively.
Defaults to |
True
|
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The data model with the mask applied. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
prefix(prefix=None)
Add a prefix to all the data model fields (non-recursive).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prefix
|
str
|
the prefix to add |
None
|
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The data model with the prefix added. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
pretty_schema()
Get a pretty version of the JSON schema for display.
Returns:
Type | Description |
---|---|
dict
|
The indented JSON schema. |
schema()
suffix(suffix=None)
Add a suffix to all the data model fields (non-recursive).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
suffix
|
str
|
the suffix to add |
None
|
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The data model with the suffix added. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
update(kv_dict)
Update wrapper to make easier to modify fields.
Implemented to help the user to identifying issues.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kv_dict
|
dict
|
The key/value dict to update. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
The help message. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
value()
The current value of the JSON object (impossible in SymbolicDataModel
).
Implemented to help the user to identifying issues.
Raises:
Type | Description |
---|---|
ValueError
|
The help message. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
any_symbolic_data_models(args=None, kwargs=None)
Checks if any of the arguments are symbolic data models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
tuple
|
Optional. The positional arguments to check. |
None
|
kwargs
|
dict
|
Optional. The keyword arguments to check. |
None
|
Returns:
Type | Description |
---|---|
bool
|
True if any of the arguments are symbolic data models, False otherwise. |
Source code in synalinks/src/backend/common/symbolic_data_model.py
is_symbolic_data_model(x)
Returns whether x
is a synalinks data model.
A "synalinks data model" is a symbolic data model, such as a data model
that was created via Input()
. A "symbolic data model"
can be understood as a placeholder for data specification -- it does not
contain any actual data, only a schema.
It can be used for building Functional models, but it
cannot be used in actual computations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
any
|
The object to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
True if |