Skip to content

The JsonDataModel class

JsonDataModel

A backend-independent dynamic data model.

This structure is the one flowing in the pipelines as the backend data models are only used for the variable/data model declaration.

Parameters:

Name Type Description Default
schema dict

The JSON object's schema. If not provided, uses the data_model to infer it.

None
json dict

The JSON object's json. If not provided, uses the data_model to infer it.

None
data_model DataModel | JsonDataModel

The data_model to use to infer the schema and json.

None
name str

Optional. The name of the data model, automatically inferred if not provided.

None

Examples:

Creating a JsonDataModel with a DataModel's schema and json:

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

json = {"query": "What is the capital of France?"}

data_model = JsonDataModel(
    schema=Query.get_schema(),
    json=json,
)

Creating a JsonDataModel with a data_model:

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

query_instance = Query(
    query="What is the capital of France?"
)
data_model = JsonDataModel(
    data_model=query_instance,
)

Creating a JsonDataModel with to_json_data_model():

class Query(synalinks.DataModel):
    query: str = synalinks.Field(
        description="The user query",
    )

data_model = Query(
    query="What is the capital of France?",
).to_json_data_model()
Source code in synalinks/src/backend/common/json_data_model.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
@synalinks_export("synalinks.JsonDataModel")
class JsonDataModel:
    """A backend-independent dynamic data model.

    This structure is the one flowing in the pipelines as
    the backend data models are only used for the variable/data model declaration.

    Args:
        schema (dict): The JSON object's schema. If not provided,
            uses the data_model to infer it.
        json (dict): The JSON object's json. If not provided,
            uses the data_model to infer it.
        data_model (DataModel | JsonDataModel): The data_model to use to
            infer the schema and json.
        name (str): Optional. The name of the data model, automatically
            inferred if not provided.

    Examples:

    **Creating a `JsonDataModel` with a DataModel's schema and json:**

    ```python
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    json = {"query": "What is the capital of France?"}

    data_model = JsonDataModel(
        schema=Query.get_schema(),
        json=json,
    )
    ```

    **Creating a `JsonDataModel` with a data_model:**

    ```python
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    query_instance = Query(
        query="What is the capital of France?"
    )
    data_model = JsonDataModel(
        data_model=query_instance,
    )
    ```

    **Creating a `JsonDataModel` with `to_json_data_model()`:**

    ```python
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    data_model = Query(
        query="What is the capital of France?",
    ).to_json_data_model()
    ```
    """

    def __init__(
        self,
        schema=None,
        json=None,
        data_model=None,
        name=None,
    ):
        name = name or auto_name(self.__class__.__name__)
        self.name = name
        self._schema = None
        self._json = None

        if not data_model and not schema and not json:
            raise ValueError("Initializing without arguments is not permited.")
        if not schema and not data_model:
            raise ValueError(
                "You should specify at least one argument between "
                "`data_model` or `schema`."
            )
        if not json and not data_model:
            raise ValueError(
                "You should specify at least one argument between `data_model` or `json`."
            )
        if data_model:
            if not schema:
                schema = data_model.get_schema()
            if not json:
                if inspect.isclass(data_model):
                    raise ValueError(
                        "Couldn't get the JSON data from the `data_model` argument, "
                        "the `data_model` needs to be instanciated. "
                        f"Received data_model={data_model}."
                    )
                json = data_model.get_json()

        self._schema = standardize_schema(schema)
        self._json = json

    def to_symbolic_data_model(self):
        """Converts the JsonDataModel to a SymbolicDataModel.

        Returns:
            (SymbolicDataModel): The symbolic data model.
        """
        return SymbolicDataModel(schema=self._schema)

    def get_json(self):
        """Gets the current json of the JSON object.

        Returns:
            (dict): The current json of the JSON object.
        """
        return self._json

    def get_schema(self):
        """Gets the schema of the JSON object.

        Returns:
            (dict): The JSON schema.
        """
        return self._schema

    def prettify_schema(self):
        """Get a pretty version of the JSON schema for display.

        Returns:
            (dict): The indented JSON schema.
        """
        import json

        return json.dumps(self._schema, indent=2)

    def prettify_json(self):
        """Get a pretty version of the JSON object for display.

        Returns:
            (str): The indented JSON object.
        """
        import json

        return json.dumps(self._json, indent=2)

    def __add__(self, other):
        """Concatenates this data model with another.

        Args:
            other (JsonDataModel | DataModel):
                The other data model to concatenate with.

        Returns:
            (JsonDataModel): The concatenated data model.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Concat().call(self, other),
        )

    def __radd__(self, other):
        """Concatenates another data model with this one.

        Args:
            other (JsonDataModel | DataModel):
                The other data model to concatenate with.

        Returns:
            (JsonDataModel): The concatenated data model.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Concat().call(other, self),
        )

    def __and__(self, other):
        """Perform a `logical_and` with another data model.

        If one of them is None, output None. If both are provided,
        then concatenates this data model with the other.

        Args:
            other (JsonDataModel | DataModel): The other data model to concatenate with.

        Returns:
            (JsonDataModel | None): The concatenated data model or None
                based on the `logical_and` table.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.And().call(self, other),
        )

    def __rand__(self, other):
        """Perform a `logical_and` (reverse) with another data model.

        If one of them is None, output None. If both are provided,
        then concatenates the other data model with this one.

        Args:
            other (JsonDataModel | DataModel): The other data model to concatenate with.

        Returns:
            (JsonDataModel | None): The concatenated data model or None
                based on the `logical_and` table.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.And().call(other, self),
        )

    def __or__(self, other):
        """Perform a `logical_or` with another data model

        If one of them is None, output the other one. If both are provided,
        then concatenates this data model with the other.

        Args:
            other (JsonDataModel | DataModel): The other data model to concatenate with.

        Returns:
            (JsonDataModel | None): The concatenation of data model if both are provided,
                or the non-None data model or None if none are provided.
                (See `logical_or` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Or().call(self, other),
        )

    def __ror__(self, other):
        """Perform a `logical_or` (reverse) with another data model

        If one of them is None, output the other one. If both are provided,
        then concatenates the other data model with this one.

        Args:
            other (JsonDataModel | DataModel): The other data model to concatenate with.

        Returns:
            (JsonDataModel | None): The concatenation of data model if both are provided,
                or the non-None data model or None if none are provided.
                (See `logical_or` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Or().call(other, self),
        )

    def __xor__(self, other):
        """Perform a `logical_xor` with another data model.

        If one of them is `None`, output the other one. If both are provided,
        then the output is `None`.

        Args:
            other (SymbolicDataModel): The other data model to concatenate with.

        Returns:
            (SymbolicDataModel | None): `None` if both are
                provided, or the non-None data model if one is provided
                or `None` if none are provided. (See `logical_xor` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Xor().call(self, other),
        )

    def __rxor__(self, other):
        """Perform a `logical_xor` (reverse) with another data model.

        If one of them is None, output the other one. If both are provided,
        then concatenates the other data model with this one.

        Args:
            other (SymbolicDataModel | DataModel): The other data model to concatenate
                with.

        Returns:
            (SymbolicDataModel | None): `None` if both are
                provided, or the non-None data model if one is provided
                or `None` if none are provided. (See `logical_xor` table).
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Xor().call(other, self),
        )

    def factorize(self):
        """Factorizes the data model.

        Returns:
            (JsonDataModel): The factorized data model.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Factorize().call(self),
        )

    def in_mask(self, mask=None, recursive=True):
        """Applies a mask to **keep only** specified keys of the data model.

        Args:
            mask (list): The mask to be applied.
            recursive (bool): Optional. Whether to apply the mask recursively.
                Defaults to True.

        Returns:
            (JsonDataModel): The data model with the mask applied.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.InMask(mask=mask, recursive=recursive).call(self),
        )

    def out_mask(self, mask=None, recursive=True):
        """Applies a mask to **remove** specified keys of the data model.

        Args:
            mask (list): The mask to be applied.
            recursive (bool): Optional. Whether to apply the mask recursively.
                Defaults to True.

        Returns:
            (JsonDataModel): The data model with the mask applied.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.OutMask(mask=mask, recursive=recursive).call(self),
        )

    def prefix(self, prefix=None):
        """Add a prefix to **all** the data model fields (non-recursive).

        Args:
            prefix (str): the prefix to add.

        Returns:
            (JsonDataModel): The data model with the prefix added.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Prefix(prefix=prefix).call(self),
        )

    def suffix(self, suffix=None):
        """Add a suffix to **all** the data model fields (non-recursive).

        Args:
            suffix (str): the suffix to add.

        Returns:
            (JsonDataModel): The data model with the suffix added.
        """
        from synalinks.src import ops

        return asyncio.get_event_loop().run_until_complete(
            ops.Suffix(suffix=suffix).call(self),
        )

    def get(self, key, default_value=None):
        """Get wrapper to make it easier to access fields.

        Args:
            key (str): The key to access.
        """
        return self._json.get(key, default_value)

    def update(self, kv_dict):
        """Update wrapper to make it easier to modify fields.

        Args:
            kv_dict (dict): The key/json dict to update.
        """
        self._json.update(kv_dict)

    def clone(self, name=None):
        """Clone a data model and give it a different name."""
        import copy

        clone = copy.deepcopy(self)
        if name:
            clone.name = name
        else:
            clone.name = auto_name(self.name + "_clone")
        return clone

    def __repr__(self):
        return f"<JsonDataModel schema={self._schema}, json={self._json}>"

__add__(other)

Concatenates this data model with another.

Parameters:

Name Type Description Default
other JsonDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
JsonDataModel

The concatenated data model.

Source code in synalinks/src/backend/common/json_data_model.py
def __add__(self, other):
    """Concatenates this data model with another.

    Args:
        other (JsonDataModel | DataModel):
            The other data model to concatenate with.

    Returns:
        (JsonDataModel): The concatenated data model.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Concat().call(self, other),
    )

__and__(other)

Perform a logical_and with another data model.

If one of them is None, output None. If both are provided, then concatenates this data model with the other.

Parameters:

Name Type Description Default
other JsonDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
JsonDataModel | None

The concatenated data model or None based on the logical_and table.

Source code in synalinks/src/backend/common/json_data_model.py
def __and__(self, other):
    """Perform a `logical_and` with another data model.

    If one of them is None, output None. If both are provided,
    then concatenates this data model with the other.

    Args:
        other (JsonDataModel | DataModel): The other data model to concatenate with.

    Returns:
        (JsonDataModel | None): The concatenated data model or None
            based on the `logical_and` table.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.And().call(self, other),
    )

__or__(other)

Perform a logical_or with another data model

If one of them is None, output the other one. If both are provided, then concatenates this data model with the other.

Parameters:

Name Type Description Default
other JsonDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
JsonDataModel | None

The concatenation of data model if both are provided, or the non-None data model or None if none are provided. (See logical_or table).

Source code in synalinks/src/backend/common/json_data_model.py
def __or__(self, other):
    """Perform a `logical_or` with another data model

    If one of them is None, output the other one. If both are provided,
    then concatenates this data model with the other.

    Args:
        other (JsonDataModel | DataModel): The other data model to concatenate with.

    Returns:
        (JsonDataModel | None): The concatenation of data model if both are provided,
            or the non-None data model or None if none are provided.
            (See `logical_or` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Or().call(self, other),
    )

__radd__(other)

Concatenates another data model with this one.

Parameters:

Name Type Description Default
other JsonDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
JsonDataModel

The concatenated data model.

Source code in synalinks/src/backend/common/json_data_model.py
def __radd__(self, other):
    """Concatenates another data model with this one.

    Args:
        other (JsonDataModel | DataModel):
            The other data model to concatenate with.

    Returns:
        (JsonDataModel): The concatenated data model.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Concat().call(other, self),
    )

__rand__(other)

Perform a logical_and (reverse) with another data model.

If one of them is None, output None. If both are provided, then concatenates the other data model with this one.

Parameters:

Name Type Description Default
other JsonDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
JsonDataModel | None

The concatenated data model or None based on the logical_and table.

Source code in synalinks/src/backend/common/json_data_model.py
def __rand__(self, other):
    """Perform a `logical_and` (reverse) with another data model.

    If one of them is None, output None. If both are provided,
    then concatenates the other data model with this one.

    Args:
        other (JsonDataModel | DataModel): The other data model to concatenate with.

    Returns:
        (JsonDataModel | None): The concatenated data model or None
            based on the `logical_and` table.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.And().call(other, self),
    )

__ror__(other)

Perform a logical_or (reverse) with another data model

If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.

Parameters:

Name Type Description Default
other JsonDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
JsonDataModel | None

The concatenation of data model if both are provided, or the non-None data model or None if none are provided. (See logical_or table).

Source code in synalinks/src/backend/common/json_data_model.py
def __ror__(self, other):
    """Perform a `logical_or` (reverse) with another data model

    If one of them is None, output the other one. If both are provided,
    then concatenates the other data model with this one.

    Args:
        other (JsonDataModel | DataModel): The other data model to concatenate with.

    Returns:
        (JsonDataModel | None): The concatenation of data model if both are provided,
            or the non-None data model or None if none are provided.
            (See `logical_or` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Or().call(other, self),
    )

__rxor__(other)

Perform a logical_xor (reverse) with another data model.

If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.

Parameters:

Name Type Description Default
other SymbolicDataModel | DataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

None if both are provided, or the non-None data model if one is provided or None if none are provided. (See logical_xor table).

Source code in synalinks/src/backend/common/json_data_model.py
def __rxor__(self, other):
    """Perform a `logical_xor` (reverse) with another data model.

    If one of them is None, output the other one. If both are provided,
    then concatenates the other data model with this one.

    Args:
        other (SymbolicDataModel | DataModel): The other data model to concatenate
            with.

    Returns:
        (SymbolicDataModel | None): `None` if both are
            provided, or the non-None data model if one is provided
            or `None` if none are provided. (See `logical_xor` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Xor().call(other, self),
    )

__xor__(other)

Perform a logical_xor with another data model.

If one of them is None, output the other one. If both are provided, then the output is None.

Parameters:

Name Type Description Default
other SymbolicDataModel

The other data model to concatenate with.

required

Returns:

Type Description
SymbolicDataModel | None

None if both are provided, or the non-None data model if one is provided or None if none are provided. (See logical_xor table).

Source code in synalinks/src/backend/common/json_data_model.py
def __xor__(self, other):
    """Perform a `logical_xor` with another data model.

    If one of them is `None`, output the other one. If both are provided,
    then the output is `None`.

    Args:
        other (SymbolicDataModel): The other data model to concatenate with.

    Returns:
        (SymbolicDataModel | None): `None` if both are
            provided, or the non-None data model if one is provided
            or `None` if none are provided. (See `logical_xor` table).
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Xor().call(self, other),
    )

clone(name=None)

Clone a data model and give it a different name.

Source code in synalinks/src/backend/common/json_data_model.py
def clone(self, name=None):
    """Clone a data model and give it a different name."""
    import copy

    clone = copy.deepcopy(self)
    if name:
        clone.name = name
    else:
        clone.name = auto_name(self.name + "_clone")
    return clone

factorize()

Factorizes the data model.

Returns:

Type Description
JsonDataModel

The factorized data model.

Source code in synalinks/src/backend/common/json_data_model.py
def factorize(self):
    """Factorizes the data model.

    Returns:
        (JsonDataModel): The factorized data model.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Factorize().call(self),
    )

get(key, default_value=None)

Get wrapper to make it easier to access fields.

Parameters:

Name Type Description Default
key str

The key to access.

required
Source code in synalinks/src/backend/common/json_data_model.py
def get(self, key, default_value=None):
    """Get wrapper to make it easier to access fields.

    Args:
        key (str): The key to access.
    """
    return self._json.get(key, default_value)

get_json()

Gets the current json of the JSON object.

Returns:

Type Description
dict

The current json of the JSON object.

Source code in synalinks/src/backend/common/json_data_model.py
def get_json(self):
    """Gets the current json of the JSON object.

    Returns:
        (dict): The current json of the JSON object.
    """
    return self._json

get_schema()

Gets the schema of the JSON object.

Returns:

Type Description
dict

The JSON schema.

Source code in synalinks/src/backend/common/json_data_model.py
def get_schema(self):
    """Gets the schema of the JSON object.

    Returns:
        (dict): The JSON schema.
    """
    return self._schema

in_mask(mask=None, recursive=True)

Applies a mask to keep only specified keys of the data model.

Parameters:

Name Type Description Default
mask list

The mask to be applied.

None
recursive bool

Optional. Whether to apply the mask recursively. Defaults to True.

True

Returns:

Type Description
JsonDataModel

The data model with the mask applied.

Source code in synalinks/src/backend/common/json_data_model.py
def in_mask(self, mask=None, recursive=True):
    """Applies a mask to **keep only** specified keys of the data model.

    Args:
        mask (list): The mask to be applied.
        recursive (bool): Optional. Whether to apply the mask recursively.
            Defaults to True.

    Returns:
        (JsonDataModel): The data model with the mask applied.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.InMask(mask=mask, recursive=recursive).call(self),
    )

out_mask(mask=None, recursive=True)

Applies a mask to remove specified keys of the data model.

Parameters:

Name Type Description Default
mask list

The mask to be applied.

None
recursive bool

Optional. Whether to apply the mask recursively. Defaults to True.

True

Returns:

Type Description
JsonDataModel

The data model with the mask applied.

Source code in synalinks/src/backend/common/json_data_model.py
def out_mask(self, mask=None, recursive=True):
    """Applies a mask to **remove** specified keys of the data model.

    Args:
        mask (list): The mask to be applied.
        recursive (bool): Optional. Whether to apply the mask recursively.
            Defaults to True.

    Returns:
        (JsonDataModel): The data model with the mask applied.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.OutMask(mask=mask, recursive=recursive).call(self),
    )

prefix(prefix=None)

Add a prefix to all the data model fields (non-recursive).

Parameters:

Name Type Description Default
prefix str

the prefix to add.

None

Returns:

Type Description
JsonDataModel

The data model with the prefix added.

Source code in synalinks/src/backend/common/json_data_model.py
def prefix(self, prefix=None):
    """Add a prefix to **all** the data model fields (non-recursive).

    Args:
        prefix (str): the prefix to add.

    Returns:
        (JsonDataModel): The data model with the prefix added.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Prefix(prefix=prefix).call(self),
    )

prettify_json()

Get a pretty version of the JSON object for display.

Returns:

Type Description
str

The indented JSON object.

Source code in synalinks/src/backend/common/json_data_model.py
def prettify_json(self):
    """Get a pretty version of the JSON object for display.

    Returns:
        (str): The indented JSON object.
    """
    import json

    return json.dumps(self._json, indent=2)

prettify_schema()

Get a pretty version of the JSON schema for display.

Returns:

Type Description
dict

The indented JSON schema.

Source code in synalinks/src/backend/common/json_data_model.py
def prettify_schema(self):
    """Get a pretty version of the JSON schema for display.

    Returns:
        (dict): The indented JSON schema.
    """
    import json

    return json.dumps(self._schema, indent=2)

suffix(suffix=None)

Add a suffix to all the data model fields (non-recursive).

Parameters:

Name Type Description Default
suffix str

the suffix to add.

None

Returns:

Type Description
JsonDataModel

The data model with the suffix added.

Source code in synalinks/src/backend/common/json_data_model.py
def suffix(self, suffix=None):
    """Add a suffix to **all** the data model fields (non-recursive).

    Args:
        suffix (str): the suffix to add.

    Returns:
        (JsonDataModel): The data model with the suffix added.
    """
    from synalinks.src import ops

    return asyncio.get_event_loop().run_until_complete(
        ops.Suffix(suffix=suffix).call(self),
    )

to_symbolic_data_model()

Converts the JsonDataModel to a SymbolicDataModel.

Returns:

Type Description
SymbolicDataModel

The symbolic data model.

Source code in synalinks/src/backend/common/json_data_model.py
def to_symbolic_data_model(self):
    """Converts the JsonDataModel to a SymbolicDataModel.

    Returns:
        (SymbolicDataModel): The symbolic data model.
    """
    return SymbolicDataModel(schema=self._schema)

update(kv_dict)

Update wrapper to make it easier to modify fields.

Parameters:

Name Type Description Default
kv_dict dict

The key/json dict to update.

required
Source code in synalinks/src/backend/common/json_data_model.py
def update(self, kv_dict):
    """Update wrapper to make it easier to modify fields.

    Args:
        kv_dict (dict): The key/json dict to update.
    """
    self._json.update(kv_dict)

is_json_data_model(x)

Returns whether x is a backend-independent data model.

Parameters:

Name Type Description Default
x any

The object to check.

required

Returns:

Type Description
bool

True if x is a backend-independent data model, False otherwise.

Source code in synalinks/src/backend/common/json_data_model.py
@synalinks_export(
    [
        "synalinks.utils.is_json_data_model",
        "synalinks.backend.is_json_data_model",
    ]
)
def is_json_data_model(x):
    """Returns whether `x` is a backend-independent data model.

    Args:
        x (any): The object to check.

    Returns:
        (bool): True if `x` is a backend-independent data model, False otherwise.
    """
    return isinstance(x, JsonDataModel)