The DataModel class
DataModel
Bases: BaseModel
The backend-dependent data model.
This data model uses Pydantic to provide, JSON schema inference and JSON serialization.
Examples:
Creating a DataModel for structured output
class AnswerWithReflection(synalinks.DataModel):
thinking: str = synalinks.Field(
description="Your step by step thinking",
)
reflection: str = synalinks.Field(
description="The reflection about your thinking",
)
answer: str = synalinks.Field(
description="The correct answer",
)
language_model = synalinks.LanguageModel("ollama/mistral")
generator = synalinks.Generator(
data_model=AnswerWithReflection,
language_model=language_model,
)
Source code in synalinks/src/backend/pydantic/core.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
__add__(other)
Concatenates this data model with another.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
JsonDataModel | DataModel | SymbolicDataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
JsonDataModel | SymbolicDataModel
|
The concatenated data model.
If one of them is a metaclass or symbolic data model,
then output a |
Source code in synalinks/src/backend/pydantic/core.py
__and__(other)
Perform a logical_and
with another data model.
If one of them is None, output None. If both are provided, then concatenates the other data model with this one.
If the other is a metaclass or symbolic data model, output a symbolic data model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
JsonDataModel | SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
JsonDataModel | SymbolicDataModel | None
|
The concatenated data model or
|
Source code in synalinks/src/backend/pydantic/core.py
__or__(other)
Perform a logical_or
with another data model
If one of them is None, output the other one. If both are provided, then concatenates this data model with the other.
If the other is a metaclass or symbolic data model, output a symbolic data model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
JsonDataModel | SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
JsonDataModel | SymbolicDataModel | None
|
The concatenation of data model
if both are provided, or the non-None data model or None if none are
provided. (See |
Source code in synalinks/src/backend/pydantic/core.py
__radd__(other)
Concatenates another data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
JsonDataModel | DataModel | SymbolicDataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
JsonDataModel | SymbolicDataModel
|
The concatenated data model.
If one of them is a metaclass or symbolic data model,
then output a |
Source code in synalinks/src/backend/pydantic/core.py
__rand__(other)
Perform a logical_and
(reverse) with another data model.
If one of them is None, output None. If both are provided, then concatenates the other data model with this one.
If the other is a metaclass or symbolic data model, output a symbolic data model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
JsonDataModel | SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
JsonDataModel | SymbolicDataModel | None
|
The concatenated data model or
|
Source code in synalinks/src/backend/pydantic/core.py
__ror__(other)
Perform a logical_or
(reverse) with another data model
If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.
If the other is a metaclass or symbolic data model, output a symbolic data model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
JsonDataModel | SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
JsonDataModel | SymbolicDataModel | None
|
The concatenation of data model
if both are provided, or the non-None data model or None if none are
provided. (See |
Source code in synalinks/src/backend/pydantic/core.py
json()
pretty_json()
Get a pretty version of the JSON object for display.
Returns:
Type | Description |
---|---|
str
|
The indented JSON object. |
to_json_data_model()
Converts the data model to a backend-independent data model.
Returns:
Type | Description |
---|---|
JsonDataModel
|
The backend-independent data model. |
Source code in synalinks/src/backend/pydantic/core.py
value()
MetaDataModel
Bases: type(BaseModel)
The metaclass data model.
This class defines operations at the metaclass level.
Allowing to use Synalinks Python operators with DataModel
types.
Source code in synalinks/src/backend/pydantic/core.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
__add__(other)
Concatenates this data model with another.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The concatenated data model. |
Source code in synalinks/src/backend/pydantic/core.py
__and__(other)
Perform a logical_and
with another data model.
If one of them is None, output None. If both are provided, then concatenates this data model with the other.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenated data model or None
based on the |
Source code in synalinks/src/backend/pydantic/core.py
__or__(other)
Perform a logical_or
with another data model
If one of them is None, output the other one. If both are provided, then concatenates this data model with the other.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenation of data model if both are
provided, or the non-None data model or None if none are provided.
(See |
Source code in synalinks/src/backend/pydantic/core.py
__radd__(other)
Concatenates (reverse) another data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The concatenated data model. |
Source code in synalinks/src/backend/pydantic/core.py
__rand__(other)
Perform a logical_and
(reverse) with another data model.
If one of them is None, output None. If both are provided, then concatenates the other data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenated data model or None
based on the |
Source code in synalinks/src/backend/pydantic/core.py
__ror__(other)
Perform a logical_or
(reverse) with another data model
If one of them is None, output the other one. If both are provided, then concatenates the other data model with this one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
SymbolicDataModel | DataModel
|
The other data model to concatenate with. |
required |
Returns:
Type | Description |
---|---|
SymbolicDataModel | None
|
The concatenation of data model if both are
provided, or the non-None data model or None if none are provided.
(See |
Source code in synalinks/src/backend/pydantic/core.py
pretty_schema()
Get a pretty version of the JSON schema for display.
Returns:
Type | Description |
---|---|
str
|
The indented JSON schema. |
schema()
to_symbolic_data_model()
Converts the data model to a symbolic data model.
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The symbolic data model. |
any_data_model(args=None, kwargs=None)
Check if any of the arguments are backend-dependent data models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
tuple
|
Optional. The positional arguments to check. |
None
|
kwargs
|
dict
|
Optional. The keyword arguments to check. |
None
|
Returns:
Type | Description |
---|---|
bool
|
True if any of the arguments are meta classes, False otherwise. |
Source code in synalinks/src/backend/pydantic/core.py
any_meta_class(args=None, kwargs=None)
Check if any of the arguments are meta classes.
This happen when using a DataModel
without instanciating it.
In Synalinks this is used when declaring data models for schema inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
tuple
|
Optional. The positional arguments to check. |
None
|
kwargs
|
dict
|
Optional. The keyword arguments to check. |
None
|
Returns:
Type | Description |
---|---|
bool
|
True if any of the arguments are meta classes, False otherwise. |
Source code in synalinks/src/backend/pydantic/core.py
compute_output_spec(fn, *args, **kwargs)
async
Computes the output specification of a function.
This function wraps the given function call in a stateless and symbolic scope to compute the output specification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fn
|
callable
|
The function to compute the output specification for. |
required |
*args
|
positional arguments
|
The positional arguments to pass to the function. |
()
|
**kwargs
|
keyword arguments
|
The keyword arguments to pass to the function. |
{}
|
Returns:
Type | Description |
---|---|
SymbolicDataModel
|
The output specification of the function. |
Source code in synalinks/src/backend/pydantic/core.py
is_data_model(x)
Returns whether x
is a DataModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
any
|
The object to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
True if |
is_meta_class(x)
Returns whether x
is a meta class.
A meta class is a python type. This method checks if the data model provided
if a meta class, allowing to detect if the DataModel
have been instanciated.
Meta classes are using in Synalinks when declaring data models for schema inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
any
|
The object to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
True if |