EarlyStopping
EarlyStopping
Bases: Callback
Stop training when a monitored metric has stopped improving.
Assuming the goal of a training is to maximize the reward.
With this, the metric to be monitored would be reward
,
and mode would be max
. A program.fit()
training loop
will check at end of every epoch whether the reward is no
longer augmenting, considering the min_delta
and patience
if applicable. Once it's found no longer increasing,
program.stop_training
is marked True and the training terminates.
The quantity to be monitored needs to be available in logs
dict
To make it so, pass the reward or metrics at program.compile
.
Example:
callback = synalinks.callbacks.EarlyStopping(monitor='reward', patience=3)
This callback will stop the training when there is no improvement in
the loss for three consecutive epochs.
program = synalinks.programs.Sequential([synalinks.modules.Generator(data_model=Answer)]) program.compile(synalinks.optimizers.RandomFewShot(), reward=synalinks.rewards.ExactMatch()) history = program.fit(..., epochs=10, batch_size=1, callbacks=[callback], verbose=0) len(history.history['reward']) # Only 4 epochs are run. 4
Parameters:
Name | Type | Description | Default |
---|---|---|---|
monitor
|
Quantity to be monitored. Defaults to |
'val_reward'
|
|
min_delta
|
Minimum change in the monitored quantity to qualify as an
improvement, i.e. an absolute change of less than min_delta, will
count as no improvement. Defaults to |
0
|
|
stop_at
|
The value at which we should stop training. |
1.0
|
|
patience
|
Number of epochs with no improvement after which training will
be stopped. Defaults to |
0
|
|
verbose
|
Verbosity mode, 0 or 1. Mode 0 is silent, and mode 1 displays
messages when the callback takes an action. Defaults to |
0
|
|
mode
|
One of |
'auto'
|
|
baseline
|
Baseline value for the monitored quantity. If not |
None
|
|
restore_best_variables
|
Whether to restore program variables from the epoch
with the best value of the monitored quantity. If |
False
|
|
start_from_epoch
|
Number of epochs to wait before starting to monitor
improvement. This allows for a warm-up period in which no
improvement is expected and thus training will not be stopped.
Defaults to |
0
|
Source code in synalinks/src/callbacks/early_stopping.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|